Fungal pathogen disables plant defense mechanism

June 19, 2020

Cabbage plants defend themselves against herbivores and pathogens by deploying a defensive mechanism called the mustard oil bomb: when the plant tissue is damaged, toxic isothiocyanates are formed and can effectively fend off attackers. Researchers at the Max Planck Institute for Chemical Ecology and the University of Pretoria have now been able to show in a new study that this defense is also effective to some extent against the widespread and detrimental fungus Sclerotinia sclerotiorum. However, the pathogen uses at least two different detoxification mechanisms that enable the fungus to successfully spread on plants defended in this way. The metabolic products thus formed are non-toxic to the fungus, allowing it to grow on these plants (Nature Communications, June 2020, DOI 10.1038/s41467-020-16921-2).

Sclerotinia sclerotiorum is a devastating fungal pathogen that can infect more than 400 different plant species. The main symptom of the disease called Sclerotinia wilt or white mold is wilting. Visible are also the white, cotton-like fungal spores that overgrow plant leaves and stalks. In agriculture, rapeseed cultivation is particularly at risk. The plant disease can affect other members of the cabbage family, and also potatoes, legumes and strawberries.

Scientists at the Max Planck Institute for Chemical Ecology in Jena have long been studying the glucosinolates and isothiocyanates that constitute the special defense mechanism of cabbage family plants, which include rapeseed, radishes and mustard. "We wanted to find out how successful plant pathogens overcome the plant defense and colonize these plants. We therefore asked ourselves whether widespread fungal pathogens have strategies to adapt to the chemical defenses of plants of the cabbage family," Jingyuan Chen, the first author of the study, explains.

The researchers were able to show experimentally that the defense based on glucosinolates is actually effective against fungal attacks. However, they also discovered two different strategies of the white mold fungus to detoxify the defensive substances: The first is a general detoxification pathway that binds glutathione to the isothiocyanate toxins. This type of detoxification of organic poisons is quite common in insects and even mammals. The second and far more effective way to render the isothiocyanates harmless is to hydrolyse them, i.e. to cleave them enzymatically with a water molecule. The researchers wanted to identify the enzymes and corresponding genes underlying this detoxification mechanism. Genes that enable the successful detoxification of these substances had already been described in bacteria. They are called Sax genes after experiments with the model plant Arabidopsis thaliana: Survival in Arabidopsis eXtracts.

"We based our search on the known bacterial SaxA proteins to select candidate genes for further investigations. We then tested whether these genes are actually expressed in greater quantities in fungi exposed to the toxins, and whether the resulting protein can render the toxins harmless," explains Daniel Vassão, one of the study leaders. Using high-resolution analytical methods, the scientists were able to identify and quantify the metabolites produced by the fungus during detoxification. They also used mutants of the fungus in which the SaxA-encoding gene had been knocked out for comparison. This revealed that the Sax protein of the white mold fungus is active against a range of isothiocyanates, allowing it to colonize different plants of the cabbage family.

Mutants lacking the gene for this detoxification pathway were dramatically reduced in their capacity to tolerate isothiocyanates. "However, it was surprising to see that these mutants up-regulated their general pathway of detoxification, although this did not compensate for the mutation," says Jingyuan Chen. Glutathione conjugation cannot detoxify isothiocyanates nearly as effectively as hydrolysis can. Although it seems to be metabolically more expensive for the fungus, this general pathway is always present as it helps the fungus to detoxify a huge variety of poisons. "It is possible that this general pathway protects the fungus initially, while the machinery required for the more specialized pathway is assembled after an initial exposure to the toxin and can take over later in the infection," says Daniel Vassão.

In further experiments, the researchers want to investigate whether other fungi that successfully infect plants of the cabbage family also detoxify isothiocyanates via the same pathway, and whether unrelated fungal species are also able to degrade these toxins. "Then we will know whether this widespread detoxification is due to repeated evolution in fungi colonizing mustards, or is a feature which has been conserved over time and is therefore found in many fungal lines," Jonathan Gershenzon, director of the Department of Biochemistry where the research was conducted, concludes.
Original publication:

Chen, J., Ullah, C., Reichelt, M., Beran, F., Yang, Z.-L., Gershenzon, J., Hammerbacher, A., Vassão, D. G. (2020). The phytopathogenic fungus Sclerotinia sclerotiorum detoxifies plant glucosinolate hydrolysis products via an isothiocyanate hydrolase. Nature Communication 11: 3090, DOI 10.1038/s41467-020-16921-2

Further Information:

Dr. Daniel Giddings Vassão, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena. Tel. +49 3641 57-1333, E-Mail

Dr. Almuth Hammerbacher, Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028 South Africa, E-Mail

Prof. Dr. Jonathan Gershenzon, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena. Tel. +49 3641 57-1300, E-Mail

Contact and Picture Requests: Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, Germany, Tel. +49 3641 57-2110, E-Mail

Download of high-resolution images via

Max Planck Institute for Chemical Ecology

Related Fungus Articles from Brightsurf:

International screening of the effects of a pathogenic fungus
The pathogenic fungus Candida auris, which first surfaced in 2009, is proving challenging to control.

Research breakthrough in fight against chytrid fungus
For frogs dying of the invasive chytridiomycosis disease, the leading cause of amphibian deaths worldwide, the genes responsible for protecting them may actually be leading to their demise, according to a new study published today in the journal Molecular Ecology by University of Central Florida and the Smithsonian Conservation Biology Institute (SCBI) researchers.

Researchers look to fungus to shed light on cancer
A team of Florida State University researchers from the Department of Chemistry and Biochemistry found that a natural product from the fungus Fusicoccum amygdali stabilizes a family of proteins in the cell that mediate important signaling pathways involved in the pathology of cancer and neurological diseases.

The invisibility cloak of a fungus
The human immune system can easily recognize fungi because their cells are surrounded by a solid cell wall of chitin and other complex sugars.

Taming the wild cheese fungus
The flavors of fermented foods are heavily shaped by the fungi that grow on them, but the evolutionary origins of those fungi aren't well understood.

Candida auris is a new drug-resistant fungus emerging globally and in the US early detection is key to controlling spread of deadly drug-resistant fungus
Early identification of Candida auris, a potentially deadly fungus that causes bloodstream and intra-abdominal infections, is the key to controlling its spread.

Genetic blueprint for extraordinary wood-munching fungus
The first time someone took note of Coniochaeta pulveracea was more than two hundred years ago, when the South African-born mycologist Dr Christiaan Hendrik Persoon mentioned it in his 1797 book on the classification of fungi.

How a fungus can cripple the immune system
An international research team led by Professor Oliver Werz of Friedrich Schiller University, Jena, has now discovered how the fungus knocks out the immune defenses, enabling a potentially fatal fungal infection to develop.

North American checklist identifies the fungus among us
Some fungi are smelly and coated in mucus. Others have gills that glow in the dark.

Tropical frogs found to coexist with deadly fungus
In 2004, the frogs of El Copé, Panama, began dying by the thousands.

Read More: Fungus News and Fungus Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to