Nav: Home

Two quantum cheshire cats exchange grins

June 19, 2020

Prof. LI Chuanfeng, XU Jinshi, and XU Xiaoye from University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS), collaborating with Prof. CHEN Jingling from Nankai University, realized the non-contacing exchange of the polarization of two photons, revealing the unique quantum characteristics of the "Quantum Cheshire Cat".

The study, published in Nature Communications, deepens the understanding of the fundamental problem of physics, "what is physical reality."

In classical world, an object should carry all of its physical properties. However, in quantum world, a quantum object may not act in such a manner - it can temporarily leave some of its physical properties where it never appears. This phenomenon is first proposed in 2013 by Yakir Aharonov, which is known as the quantum Cheshire cat effect. Cheshire Cat is a grinning cat in the fairy tale "Alice in Wonderland". It can disappear, but its grin is still hanging in the air.

In the next few years, experimental physicists observed the separation of the particle properties from the particles in the neutron and photon interference experiments. Scientists soon realized that the results of these experiments could be explained by the classic interference theory. To show the unique quantum effects of "Quantum Cheshire Cat", however, more complicated experiments were needed.

Prof. LI's group, for the first time, used the two-photon system to demonstrate the unique quantum effect of two "quantum Cheshire Cats" exchanging grins. Weak values are required to characterize the location of Cheshire cat and its grin in experiments. However the extraction of weak values in multi-body quantum systems is a big problem.

In this study, scientists proved that the traditional weak measurement method can be bypassed by applying a perturbation to the system. The weak value can be obtained directly by using the inherent relationship between the system detection probability and the strength of the perturbation.

They prepared a two-photon hyper-entangled state, that is, the polarization and path degrees of freedom of the two photons are respectively in the maximum entangled state but there are no correlations between the two degrees of freedom. Then imaginary time evolution introduces perturbation to obtain the weak value of path and polarization of the photon.

Through these weak values, scientists observed that every photon and its polarization are separated, and finally the polarization of the other photon is obtained. The non-contacting grin exchange of the two "quantum Cheshire cats" is realized.
-end-


University of Science and Technology of China

Related Photons Articles:

Single photons from a silicon chip
Quantum technology holds great promise: Quantum computers are expected to revolutionize database searches, AI systems, and computational simulations.
Physicists "trick" photons into behaving like electrons using a "synthetic" magnetic field
Scientists have discovered an elegant way of manipulating light using a ''synthetic'' Lorentz force -- which in nature is responsible for many fascinating phenomena including the Aurora Borealis.
Scientists use photons as threads to weave novel forms of matter
New research from the University of Southampton has successful discovered a way to bind two negatively charged electron-like particles which could create opportunities to form novel materials for use in new technological developments.
The nature of nuclear forces imprinted in photons
IFJ PAN scientists together with colleagues from the University of Milano (Italy) and other countries confirmed the need to include the three-nucleon interactions in the description of electromagnetic transitions in the 20O atomic nucleus.
Pushing photons
UC Santa Barbara researchers continue to push the boundaries of LED design a little further with a new method that could pave the way toward more efficient and versatile LED display and lighting technology.
Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.
An advance in molecular moviemaking shows how molecules respond to two photons of light
Some of the molecules' responses were surprising and others had been seen before with other techniques, but never in such detail or so directly, without relying on advance knowledge of what they should look like.
The imitation game: Scientists describe and emulate new quantum state of entangled photons
A research team from ITMO University, MIPT and Politecnico di Torino, has predicted a novel type of topological quantum state of two photons.
What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.
Producing single photons from a stream of single electrons
Researchers at the University of Cambridge have developed a novel technique for generating single photons, by moving single electrons in a specially designed light-emitting diode (LED).
More Photons News and Photons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Sound And Silence
Sound surrounds us, from cacophony even to silence. But depending on how we hear, the world can be a different auditory experience for each of us. This hour, TED speakers explore the science of sound. Guests on the show include NPR All Things Considered host Mary Louise Kelly, neuroscientist Jim Hudspeth, writer Rebecca Knill, and sound designer Dallas Taylor.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at Radiolab.org/donate.