Nav: Home

Septum keeps neurons in synch, can reduce epileptic seizures by 90 percent

June 20, 2006

Septum sets the tempo of brain's electrical activity

BETHESDA, MD (June 20, 2006) - The brain's septum helps prevent epileptic seizures by inducing rhythmical electrical activity in the circuits of another area of the brain known as the hippocampus, according to a new study in the Journal of Neurophysiology. The researchers found that, by imposing a normal "theta" rhythm on chronically epileptic rats, they could reduce epileptic seizures by 86-97 percent.

The study "Septo-hippocampal networks in chronically epileptic rats: Potential antiepileptic effects of theta rhythm generation," by Luis V. Colom, Antonio García-Hernández, Maria T. Castañeda, Miriam G. Perez-Cordova and Emilio R. Garrido-Sanabria, The University of Texas at Brownsville/Texas Southmost College, appears in the June issue of the Journal of Neurophysiology, published by The American Physiological Society.

The septum acts as the conductor, orchestrating brain impulses as they pass from the brain stem through the septum and on to the hippocampus, said the study's lead researcher, Luis V. Colom, of the University of Texas at Brownsville/Texas Southmost College. The hippocampus is a part of the brain that plays a role in memory, spatial navigation and sensory motor integration, among other functions.

Normally, the hippocampus oscillates at a frequency of 3-12 Hz, a frequency that is called the theta rhythm, Colom explained. Oscillations at theta frequency are important in processing and storing relevant sensory information and appears important to certain memory processes.

"My hypothesis is that the septum keeps the electrical activity of neurons within certain areas of the brain working within normal ranges," Colom said. "By keeping the neurons firing normally, the septum inhibits neuronal hyperexcitability, such as epilepsy, and hypoexcitablity, such as Alzheimer's disease." In addition, septal impulses may help to maintain the anatomical integrity of other brain structures.

Neurons talk

The brain's neurons are constantly chatting with each other through electrical impulses but it's a chatter that has to be kept in check, or it can snowball into an electrical storm that marks an epileptic seizure, Colom explained. Epilepsy affects an estimated 4 million Americans, he said.

There are a variety of ways to induce neurons to fire rhythmically, including, interestingly, engaging in stimulating cognitive activities.

Scientists and medical providers know that brain lesions, skull fractures, and high fever are among the factors that can produce epilepsy. But in most cases, there is no obvious cause, Colom said.

Colom's lifelong interest in how the brain works has led him to study epilepsy and Alzheimer's disease. People who suffer Alzheimer's, a degenerative disorder that affects various brain regions including the septum, have a higher risk of epileptic seizures, in the 10-22 percent range, he noted.

Previous studies have suggested that the septum plays an antiepileptic role. But in this study, Colom et al. showed what happens among the septum's neurons during epilepsy, knowledge that is important to understanding the mechanism underlying seizure generation. This line of inquiry could one day lead to the development of anti-epileptic drugs, said Colom.

Theta disrupted in epileptic rats

In this study, the researchers induced epilepsy by injecting anesthetized rats with pilocarpine, a drug that excites the brain's neurons and activates the synapses between the neurons to produce status epilepticus, in which sustained seizures occur. The rats received diazepam three hours later to interrupt the seizures, but became chronically epileptic, experiencing 3-5 seizures weekly.

The researchers then used electrodes to record individual neurons within the septum of the anesthetized rats to see what happened within the nerve pathways. They found that the epileptic rats suffered significantly more epileptic episodes when the brain did not have the proper theta rhythm.

The researchers also found that when the theta rhythm was induced in the rats, it reduced epileptic discharges 86-97 percent. (The researchers induced theta in one of three ways - by regulating the rats' anesthesia, by stimulating the septum directly with an injection of carbachol, or by using the sensory stimulation method of pinching the tail.)

The amplitude and frequency of the theta rhythm of the epileptic rats was significantly altered compared to the control group. In effect, the theta rhythm became faster and more jittery. Also, the septal neurons of epileptic rats doubled their firing rates in relation to the controls, from about 14 spikes per second to about 29 spikes per second.

Two promising lines of research

Colom and his fellow researchers at the University of Texas at Brownsville/Texas Southmost College are looking at two different approaches to stopping epilepsy. One group is taking the approach of making the neurons less excitable (this effort is led by Emilio Garrido-Sanabria and Masoud Zarei). Colom's group is looking for a new treatment that will focus on inducing theta.

"The understanding of the theta rhythm's anti-epileptic effect at the cellular and molecular levels may result in novel therapeutic approaches dedicated to protect the brain against abnormal excitability states," the authors wrote.

Although this research gives more insight into how epilepsy occurs, a cure is still years away. "But I would say there is hope," Colom said. "We want to offer people with epilepsy new options," he said, but progress will depend upon funding, he added.

Next steps

The researchers will repeat the study using animals that are awake and mobile, though it is more difficult to record the brain's discharges in freely moving animals. Then the research can move to humans.
-end-
Source and funding

"Septo-hippocampal networks in chronically epileptic rats: potential antiepileptic effects of theta rhythm generation," by Luis V. Colom, Antonio García-Hernández, Maria T. Castañeda, Miriam G. Perez-Cordova and Emilio R. Garrido-Sanabria, Department of Biological Sciences and Center for Biomedical Studies, The University of Texas at Brownsville/Texas Southmost College, Brownsville. The study appears in the June issue of the Journal of Neurophysiology published by The American Physiological Society.

The study was funded by National Institutes of Health grants to Colom, and to Colom and Garrido-Sanabria.

Editor's note: The media may obtain a copy of Colom et al. by contacting Christine Guilfoy, American Physiological Society, (301) 634-7253, (978) 290-2400 (cell), or cguilfoy@the-aps.org.

The American Physiological Society was founded in 1887 to foster basic and applied bioscience. The Bethesda, Maryland-based society has 10,500 members and publishes 14 peer-reviewed journals containing almost 4,000 articles annually.

APS provides a wide range of research, educational and career support and programming to further the contributions of physiology to understanding the mechanisms of diseased and healthy states. In 2004, APS received the Presidential Award for Excellence in Science, Mathematics and Engineering Mentoring (PAESMEM).

American Physiological Society

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

The Neuron: Cell and Molecular Biology
by Irwin B. Levitan (Author), Leonard K. Kaczmarek (Author)

The Neuron: Cell and Molecular Biology
by Irwin B. Levitan (Author), Leonard K. Kaczmarek (Author)

The Myth of Mirror Neurons: The Real Neuroscience of Communication and Cognition
by W. W. Norton & Company

From Neurons to Neighborhoods : The Science of Early Childhood Development
by Committee on Integrating the Science of Early Childhood Development (Author), Youth, and Families Board on Children (Author), National Research Council (Author), Committee on Integrating the Science of Early Childhood Development (Author), Jack P. Shonkoff (Editor), Deborah A. Phillips (Editor)

Spiking Neuron Models: Single Neurons, Populations, Plasticity
by Wulfram Gerstner (Author)

From Neurons to Neighborhoods: An Update: Workshop Summary (BCYF 25th Anniversary)
by National Research Council (Author), Division of Behavioral and Social Sciences and Education (Author), Institute of Medicine (Author), Youth, and Families Board on Children (Author), Steve Olson (Editor)

Think-A-Lot-Tots: The Neuron: Science Books for Babies, Toddlers, and Kids
by Dr. Thomai Dion (Author)

From Neuron to Brain (5th Ed)
by John G. Nicholls (Author), A. Robert Martin (Author), David A. Brown (Author), Mathew E. Diamond (Author), David A. Weisblat (Author), Paul A. Fuchs (Author)

Neurons & Neurotransmitters Wall Chart: 8271 (Physiology)
by Scientific Publishing (Author)

Neurons in Action 2: Tutorials and Simulations using NEURON
by John W. Moore (Author), Ann E. Stuart (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Where Joy Hides
When we focus so much on achievement and success, it's easy to lose sight of joy. This hour, TED speakers search for joy in unexpected places, and explain why it's crucial to a fulfilling life. Speakers include inventor Simone Giertz, designer Ingrid Fetell Lee, journalist David Baron, and musician Meklit Hadero.
Now Playing: Science for the People

#499 Technology, Work and The Future (Rebroadcast)
This week, we're thinking about how rapidly advancing technology will change our future, our work, and our well-being. We speak to Richard and Daniel Susskind about their book "The Future of Professions: How Technology Will Transform the Work of Human Experts" about the impacts technology may have on professional work. And Nicholas Agar comes on to talk about his book "The Sceptical Optimist" and the ways new technologies will affect our perceptions and well-being.