Novel chemotherapy agent appears to be a promising pancreatic cancer treatment

June 20, 2012

LAKE TAHOE, Nev. -- A novel chemotherapeutic agent, the highly selective MEK1/2 inhibitor BAY 86-9766, may be a promising future treatment for pancreatic ductal adenocarcinoma (PDAC), according to preclinical results presented at the American Association for Cancer Research's Pancreatic Cancer: Progress and Challenges conference, held here June 18-21.

"We showed in our endogenous mouse model that our novel chemotherapeutic agent leads to dramatic tumor shrinkage after only one week of treatment," said Nicole Teichmann, Ph.D., of the Klinikum rechts der Isar at the Technische Universität München in Munich, Germany. "Moreover, the therapy was as effective in animals with advanced tumors and ascites, which is often the case if patients come to the clinic."

In this preclinical therapeutic study, BAY 86-9766 was evaluated in one of the most aggressive mouse models for PDAC, according to Teichmann. The researchers induced endogenous genetic alterations in these mice, and within eight weeks, the mice developed invasive, lethal PDAC. These genetic alterations closely mimic what is found in most human cases of the disease, she said.

"The mutations trigger the onset of a signaling cascade that is necessary for the survival and proliferation of the cancer cells," Teichmann said. "Our novel chemotherapeutic drug inhibits one essential protein of this cascade and therefore leads to the cascade's shutdown."

A daily treatment of 25 mg/kg with BAY 86-9766 prolonged the survival of the mice in the study compared to their 'placebo'-treated counterparts; median survival advantage was 20 days. The treatment caused dramatic tumor regression after only one week and was effective in animals with advanced tumors and ascites, which is often how patients present to the clinic.

"We were really surprised that the tumor load dramatically decreases after one week of therapy and also that the treatment conferred such a strong overall survival benefit," Teichmann said. "Previous studies with gemcitabine, the standard-of-care agent for PDAC since 1997, or other novel inhibitors tested in our lab with the same mouse model showed no or only very modest effects. In our hands, this is the first targeted drug to have shown such strong tumor effects in an endogenous mouse model of PDAC."

In most animals, the tumor relapsed after three weeks of treatment, which modeled the situation in humans. "Often patients respond to a therapy and after a while, the tumor relapses," she added. "We can exploit this same tumor relapse in the mouse to investigate the resistance mechanism to improve the therapeutic strategy."

These findings encourage testing in mouse models rather than xenograft models. "Our results support testing novel agents for pancreatic cancer in endogenous mouse models, rather than conventional xenograft models because they take into account the genetic and morphological heterogeneity of the disease and may be more predictive with regard to efficacy," Teichmann said.
-end-
Follow the AACR on Twitter: @aacr #aacr
Follow the AACR on Facebook: http://www.facebook.com/aacr.org

About the AACR

Founded in 1907, the American Association for Cancer Research (AACR) is the world's first and largest professional organization dedicated to advancing cancer research and its mission to prevent and cure cancer. AACR's membership includes 34,000 laboratory, translational and clinical researchers; population scientists; other health care professionals; and cancer advocates residing in more than 90 countries. The AACR marshals the full spectrum of expertise of the cancer community to accelerate progress in the prevention, biology, diagnosis and treatment of cancer by annually convening more than 20 conferences and educational workshops, the largest of which is the AACR Annual Meeting with more than 17,000 attendees. In addition, the AACR publishes seven peer-reviewed scientific journals and a magazine for cancer survivors, patients and their caregivers. The AACR funds meritorious research directly as well as in cooperation with numerous cancer organizations. As the Scientific Partner of Stand Up To Cancer, the AACR provides expert peer review, grants administration and scientific oversight of individual and team science grants in cancer research that have the potential for near-term patient benefit. The AACR actively communicates with legislators and policymakers about the value of cancer research and related biomedical science in saving lives from cancer.

For more information about the AACR, visit www.AACR.org.

Abstract: MEK1/2 inhibition with the novel chemotherapeutic agent BAY 86-9766 (RDEA119) - a promising treatment strategy for pancreatic cancer. Nicole Teichmann1, Marija Trajkovic-Arsic1, Arne Scholz2, Schmid M. Roland1, Braren Rickmer1, Jens T. Siveke1. 1Klinikum rechts der Isar, Technische Universität München, Munich, Germany, 2Bayer Schering Pharma AG, Berlin, Germany.

Introduction: Novel effective agents and improved mouse models for better prediction of clinical efficacy of new therapies for pancreatic cancer are urgently needed. In this study we used a genetically engineered mouse model of PDAC for preclinical evaluation of a novel highly selective MEK1/2 inhibitor BAY 86-9766.

Experimental design: To mimic molecular and morphological characteristics of human PDAC, we generated mice with pancreas specific activation of oncogenic Kras and concomitant deletion of p53 (Ptf1a+/Cre, Kras+/LSL-G12D, p53loxP/loxP; CKP) using a Cre/loxP approach. Those mice develop invasive PDAC and typically die at 8 weeks of age. To assess the in vivo efficacy of BAY 86-9766 CKP mice with a defined tumor burden were treated daily with 25 mg/kg of BAY 86-9766 from 40 days of age until death. Tumor progression was monitored by measurements of tumor volume via non-invasive T2-weighted magnetic resonance imaging on a clinical 1,5T MRI device.

Results: BAY 86-9766 prolonged the survival of CKP mice significantly with a median survival advantage of 20 days. Moreover, dramatic tumor regression was observed already after 1 week of treatment. This strong decrease of the tumor load was also seen when therapy was applied in mice with advanced tumors and ascites. Tumor shrinkage mainly results from an apoptosis induction via Bim upregulation and to a smaller extend from an impaired proliferation of the tumor cells. However, in most animals, tumors relapsed typically after 3 weeks of treatment. Indeed, relapsed tumors presented altered morphological features compared to their vehicle counterparts. To closer investigate the underlying resistance mechanism primary mouse pancreatic tumor cell lines from vehicle and BAY 86-9766 treated PDACs were established and further characterized. Interestingly, in some cell lines isolated from MEK1/2 inhibitor treated mice and only one cell line isolated from vehicle treated controls an epithelial to mesenchymal transition (EMT) phenotype was observed. These data suggest that BAY 86-9766 treatment induced EMT, which coincides with the histological analysis and concomitant lower sensitivity to erlotinib treatment. Moreover, those cells exhibited higher protein levels of p-EGFR and p-ERK as well as higher mRNA and active GTP-bound levels of the driving oncogene Kras, which could be involved in triggering EMT.

Conclusions: These preclinical data provide compelling evidence that the novel MEK1/2 inhibitor BAY 86-9766 is a promising future therapeutic agent for the treatment of pancreatic cancer in clinical practice. The continuing profound examination of the escape mechanism of the relapsing tumor can then be exploited to develop an improved therapy strategy for this aggressive cancer type in the future.

American Association for Cancer Research

Related Pancreatic Cancer Articles from Brightsurf:

Precision chemo-immunotherapy for pancreatic cancer?
Pancreatic cancer is highly lethal: according to the National Cancer Institute, only about 10 percent of patients remain alive five years after diagnosis.

Nerves keep pancreatic cancer cells from starving
Pancreatic cancer cells avert starvation by signaling to nerves, which grow into dense tumors and secrete nutrients.

Pancreatic cancer: Subtypes with different aggressiveness discovered
To date, no targeted personalized therapies for pancreatic cancer exist.

Bringing the 'sticky' back to pancreatic cancer
A multidisciplinary team of researchers at Japan's Tohoku University has found that a gene regulator, called BACH1, facilitates the spread of pancreatic cancer to other parts of the body.

Does lung damage speed pancreatic cancer?
High levels of CO2 in the body, due to chronic respiratory disorders, may exacerbate pancreatic cancer, making it more aggressive and resistant to therapy.

Scientists have identified the presence of cancer-suppressing cells in pancreatic cancer
Researchers have identified cells containing a protein called Meflin that has a role in restraining the progression of pancreatic cancer.

Pancreatic cancer discovery reveals how the aggressive cancer fuels its growth
A new discovery about pancreatic cancer sheds light on how the cancer fuels its growth and may help explain how promising cancer drugs work -- and for whom they will fail.

Overcoming resistance in pancreatic cancer
In pancreatic cancer cells' struggle to survive, the cells choose alternative routes when their main pathways are blocked by drugs.

Exposing how pancreatic cancer does its dirty work
Pancreatic cancer is a puzzle -- tumors slough off cells into the bloodstream early in the disease, but the tumors themselves have almost no blood vessels in them.

Targeting cell division in pancreatic cancer
Study provides new evidence of synergistic effects of drugs that inhibit cell division and support for further clinical trials.

Read More: Pancreatic Cancer News and Pancreatic Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.