Argonne researchers receive 4 R&D 100 awards

June 20, 2012

ARGONNE, Ill.-- Four technologies developed by researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory have received this year's R&D 100 awards.

The awards, organized by R&D magazine, have been given out annually since 1962 for the top technologies of the year and are widely considered to be the "Oscars of Innovation."

"Congratulations to this year's R&D 100 award winners," said Energy Secretary Steven Chu. "The research and development at the Department of Energy's laboratories continues to help the nation meet our energy challenges, strengthen our national security and improve our economic competitiveness."

This year's winners from Argonne (with team leaders) are:

Globus Online: Ian Foster, Director, Computation Institute.

High-Energy Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles: Khalil Amine, Senior Materials Scientist and Group Leader, Chemical Sciences and Engineering Division.

Large Area Microchannel Plates: Jeffrey Elam, Principal Chemist and Group Leader, Energy Systems Division.

Ultra-Fast and Large-Scale Boriding: Ali Erdemir, Argonne Distinguished Fellow, Energy Systems Division.

"We are very proud that Argonne's world-class researchers are once again so well-represented among the R&D 100," said Eric D. Isaacs, director of Argonne. "This year's awards underscore the exceptional range of Argonne's scientific initiatives, as well as our continuing success in converting discovery science into innovative, high-impact products, processes and systems."

Globus Online

Globus Online addresses a central problem in the emerging world of big data research: moving large quantities of information reliably, efficiently and securely among the data centers, scientific facilities, research laboratories, and supercomputing sites where data are produced, transformed, stored and consumed.

Researchers at Argonne and the Computation Institute at the University of Chicago designed Globus Online to address the specific needs of the research community. Researchers with minimal IT expertise can use Globus Online literally in minutes to move large scientific data sets reliably and quickly among large scientific facilities (such as supercomputing centers and high energy physics experiments), cloud storage providers, campus systems, and personal computers. Globus Online requires no software installation by the user unless data are to be moved to or from a local computer; it provides an intuitive web interface that greatly simplifies what is often a complex and time-consuming process.

High-Energy Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles

All other things being equal, the energy density of a lithium‐ion (Li-ion) battery depends on the capacity of the cathode material in each cell and the number of cells in the battery. To meet the extremely high energy-density requirement of the Chevy Volt or Nissan Leaf, for example, a battery manufacturer must either develop a high‐capacity cathode or compensate for a low cathode capacity by greatly increasing the number of cells, even though doing so makes the overall battery larger and heavier.

Argonne and several partners have developed a novel high-energy and high-power cathode material for use in Li-ion batteries especially suited for plug-in hybrids (PHEVs) and all-electric vehicles (EVs). This material provides much higher energy and longer life than any other Li-ion cathode material, and as such is also ideal for batteries in hybrid vehicles and a wide range of consumer electronics applications.

The new cathode material allows battery pack size to shrink significantly both at the individual cell level and through a reduction in the number of cells needed in the battery pack, thus achieving a significant reduction in overall battery cost.

Large Area Microchannel Plates

Microchannel plate (MCP) detectors are a critical technology for a wide variety of imaging and sensing applications ranging from medicine and physics to national security. The Argonne technology improves advanced imaging and sensing technologies by offering a means to fabricate larger area, higher performance and more robust MCP-based detectors at a significantly lower cost.

In medicine, imaging cameras such as Positron Emission Tomography (PET) scanners help doctors to provide early and accurate detection of the onset and progression of diseases. For national security purposes, flat-panel neutron detectors could be used to screen shipping containers or trucks for nuclear materials. In the scientific community, particle detectors are essential to advancing large-scale, high energy physics experiments. Furthermore, MCPs are a critical component in the image intensifiers used by the military and law enforcement as well as in scientific research.

Ultra-Fast and Large-Scale Boriding

Argonne's ultra-fast and large-scale boriding process is a green, efficient industrial-scale boriding process that can drastically reduce costs, increase productivity, and improve the performance and reliability of machine components, such as engine tappets, agricultural knife guards, pump seals, and valves. This new process increases surface hardness of these components by factors of 3 to 10.

The boriding process quickly converts the outer surfaces of metallic parts and components into a hard, thick boride layer that dramatically increases resistance to wear, abrasion, erosion, scuffing and corrosion.
-end-
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov

DOE/Argonne National Laboratory

Related Physics Articles from Brightsurf:

Helium, a little atom for big physics
Helium is the simplest multi-body atom. Its energy levels can be calculated with extremely high precision only relying on a few fundamental physical constants and the quantum electrodynamics (QED) theory.

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.

Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.

Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.

Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.

2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'

Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.

Read More: Physics News and Physics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.