Researchers estimate ice content of crater at moon's south pole

June 20, 2012

NASA's Lunar Reconnaissance Orbiter (LRO) spacecraft has returned data that indicate ice may make up as much as 22 percent of the surface material in a crater located on the moon's south pole.

The team of NASA and university scientists using laser light from LRO's laser altimeter examined the floor of Shackleton crater. They found the crater's floor is brighter than those of other nearby craters, which is consistent with the presence of small amounts of ice. This information will help researchers understand crater formation and study other uncharted areas of the moon. The findings are published in Thursday's edition of the journal Nature.

"The brightness measurements have been puzzling us since two summers ago," said Gregory Neumann of NASA's Goddard Space Flight Center in Greenbelt, Md., a co-author on the paper. "While the distribution of brightness was not exactly what we had expected, practically every measurement related to ice and other volatile compounds on the moon is surprising, given the cosmically cold temperatures inside its polar craters."

The spacecraft mapped Shackleton crater with unprecedented detail, using a laser to illuminate the crater's interior and measure its albedo or natural reflectance. The laser light measures to a depth comparable to its wavelength, or about a micron. That represents a millionth of a meter, or less than one ten-thousandth of an inch. The team also used the instrument to map the relief of the crater's terrain based on the time it took for laser light to bounce back from the moon's surface. The longer it took, the lower the terrain's elevation.

In addition to the possible evidence of ice, the group's map of Shackleton revealed a remarkably preserved crater that has remained relatively unscathed since its formation more than three billion years ago. The crater's floor is itself pocked with several small craters, which may have formed as part of the collision that created Shackleton.

The crater, named after the Antarctic explorer Ernest Shackleton, is two miles deep and more than 12 miles wide. Like several craters at the moon's south pole, the small tilt of the lunar spin axis means Shackleton crater's interior is permanently dark and therefore extremely cold.

"The crater's interior is extremely rugged," said Maria Zuber, the team's lead investigator from the Massachusetts Institute of Technology in Cambridge in Mass. "It would not be easy to crawl around in there."

While the crater's floor was relatively bright, Zuber and her colleagues observed that its walls were even brighter. The finding was at first puzzling. Scientists had thought that if ice were anywhere in a crater, it would be on the floor, where no direct sunlight penetrates. The upper walls of Shackleton crater are occasionally illuminated, which could evaporate any ice that accumulates. A theory offered by the team to explain the puzzle is that "moonquakes"-- seismic shaking brought on by meteorite impacts or gravitational tides from Earth -- may have caused Shackleton's walls to slough off older, darker soil, revealing newer, brighter soil underneath. Zuber's team's ultra-high-resolution map provides strong evidence for ice on both the crater's floor and walls.

"There may be multiple explanations for the observed brightness throughout the crater," said Zuber. "For example, newer material may be exposed along its walls, while ice may be mixed in with its floor."

The initial primary objective of LRO was to conduct investigations that prepare for future lunar exploration. Launched in June 2009, LRO completed its primary exploration mission and is now in its primary science mission. LRO was built and is managed by Goddard. This research was supported by NASA's Human Exploration and Operations Mission Directorate and Science Mission Directorate at the agency's headquarters in Washington.
-end-
For an image of the crater, visit:

http://go.nasa.gov/MlzloW

For more information about NASA's Lunar Reconnaissance Orbiter mission, visit:

http://www.nasa.gov/lro

NASA/Goddard Space Flight Center

Related Laser Articles from Brightsurf:

Laser technology: New trick for infrared laser pulses
For a long time, scientists have been looking for simple methods to produce infrared laser pulses.

Sensors get a laser shape up
Laser writing breathes life into high-performance sensing platforms.

Laser-powered nanomotors chart their own course
The University of Tokyo introduced a system of gold nanorods that acts like a tiny light-driven motor, with its direction of motion is determined by the orientation of the motors.

What laser color do you like?
Researchers at the National Institute of Standards and Technology (NIST) and the University of Maryland have developed a microchip technology that can convert invisible near-infrared laser light into any one of a panoply of visible laser colors, including red, orange, yellow and green.

Laser technology: The Turbulence and the Comb
While the light of an ordinary laser only has one single, well-defined wavelength, a so-called ''frequency comb'' consists of different light frequencies, which are precisely arranged at regular distances, much like the teeth of a comb.

A laser for penetrating waves
The 'Landau-level laser' is an exciting concept for an unusual radiation source.

Laser light detects tumors
A team of researchers from Jena presents a groundbreaking new method for the rapid, gentle and reliable detection of tumors with laser light.

The first laser radio transmitter
For the first time, researchers at Harvard School of Engineering have used a laser as a radio transmitter and receiver, paving the way for towards ultra-high-speed Wi-Fi and new types of hybrid electronic-photonic devices.

The random anti-laser
Scientists at TU Wien have found a way to build the 'opposite' of a laser -- a device that absorbs a specific light wave perfectly.

Laser 'drill' sets a new world record in laser-driven electron acceleration
Combining a first laser pulse to heat up and 'drill' through a plasma, and another to accelerate electrons to incredibly high energies in just tens of centimeters, scientists have nearly doubled the previous record for laser-driven particle acceleration at Berkeley Lab's BELLA Center.

Read More: Laser News and Laser Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.