Research shows the response of the carbon cycle to climate change

June 20, 2012

Marine and freshwater environments have the potential to release more carbon dioxide (CO2) into the atmosphere in a warmer climate than their land counterparts, scientists at Queen Mary, University of London have found.

In the largest ever analysis of rates of respiration, published online in the journal Nature today (20 June 2012), scientists compared the temperature dependence of respiration between aquatic and land ecosystems.

Lead author, Dr Gabriel Yvon-Durocher from Queen Mary, University of London explained the context of the research: "In the carbon cycle, photosynthesis by plants absorbs carbon dioxide (CO2) while respiration by animals returns CO2 to the atmosphere. Understanding how rates of respiration of entire ecosystems respond to changes in temperature will be crucial for forecasting future climate change as the planet warms in the coming decades."

In analysing annual rates of respiration across different ecosystems around the world, they found that aquatic ecosystems had a stronger response to temperature changes than land ecosystems.

"Respiration has a higher 'activation energy' than photosynthesis, meaning that it increases more rapidly with increasing temperature. But over a longer time period, the carbon fixed by photosynthesis limits respiration on the land. However, many aquatic ecosystems receive additional carbon from the land, which washes into lakes, rivers, estuaries and the sea from rainfall. This extra carbon means that respiration in aquatic ecosystems is not limited by photosynthesis and can have a stronger response to temperature than ecosystems on the land," explained Dr Yvon-Durocher.

"These findings demonstrate that aquatic ecosystems have a greater potential to release CO2 to the atmosphere as the climate warms, over long periods of time."

The authors warn that there are many other factors that need to be considered when analysing the links between global warming and changes in the carbon cycle.

"Our research has highlighted the potential of aquatic ecosystems to contribute more CO2 to the atmosphere as global temperatures rise, but we can not definitively say that this will exacerbate the effects of climate change - it merely highlights a new mechanism that must be considered when making future predictions," Dr Yvon-Durocher said.

"Further research should be done to characterise the temperature sensitivities of the other key fluxes mediated by ecosystems that control the levels of greenhouse gases in the atmosphere to make more accurate predictions of future climate change."
'Reconciling the temperature dependence of respiration across time scales and ecosystem types' will be published online in the journal Nature at 13.00 (EST) on 20 June 2012.

This work was carried out at Queen Mary, University of London and funded by the Natural Environment Research Council of the UK.

Queen Mary University of London

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to