Tin-100, a doubly magic nucleus

June 20, 2012

Stable tin, as we know it, comprises 112 nuclear particles - 50 protons and 632 neutrons. The neutrons act as a kind of buffer between the electrically repelling protons and prevent normal tin from decaying. According to the shell model of nuclear physics, 50 is a "magic number" that gives rise to special properties. Tin-100, with 50 protons and 50 neutrons, is "doubly magic," making it particularly interesting for nuclear physicists.

Shooting xenon-124 ions at a sheet of beryllium, the international team headed by physicists from the TU Muenchen, the Cluster of Excellence Origin and Structure of the Universe and the GSI in Darmstadt succeeded in creating tin-100 and analyzing its subsequent decay. Using specially developed particle detectors, they were able to measure the half-life and decay energy of tin-100 and its decay products. Their experiments confirmed that tin-100 has the fastest beta decay of all atomic nuclei, as previously predicted by theoretical physicists.

A repeat of the experiment is slated for the near future at the RIKEN research center in Japan. The beam intensity at RIKEN is higher in the mean time, allowing even more precise measurements. The aim of the research work is to improve the understanding of processes in the formation of heavy elements during explosions on the surface of compact stars. In addition, the researchers hope to draw conclusions on the neutrino mass from the measurements.
This work was supported by the BMBF, by the GSI, by the DFG-Cluster of Excellence Origin and Structure of the Universe, by the EC within the FP6 through I3-EURONS and by the Swedish Research Council.

Original publication:

Superallowed Gamow-Teller Decay of the Doubly Magic Nucleus Sn-100, Hinke et al., Nature, 21. Juni 2012 - DOI: 10.1038/nature11116

The German version is available here: http://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/kurz/article/2994 7/

Technical University of Munich (TUM)

Related Neutrons Articles from Brightsurf:

No matter the size of a nuclear party, some protons and neutrons will pair up and dance
No matter the size of a nuclear party, certain protons and neutrons will always pair up and dance, a new MIT study finds.

Neutrons chart atomic map of COVID-19's viral replication mechanism
To better understand how the novel coronavirus behaves and how it can be stopped, scientists have completed a three-dimensional map that reveals the location of every atom in an enzyme molecule critical to SARS-CoV-2 reproduction.

Perovskite materials: Neutrons show twinning in halide perovskites
Solar cells based on hybrid halide perovskites achieve high efficiencies.

Scientists achieve higher precision weak force measurement between protons, neutrons
Through a one-of-a-kind experiment at Oak Ridge National Laboratory, nuclear physicists have precisely measured the weak interaction between protons and neutrons.

Story tips: Pandemic impact, root studies, neutrons confirm, lab on a crystal & modeling fusion
ORNL Story Tips: Pandemic impact, root studies, neutrons confirm, lab on a crystal and modeling fusion.

Scientists carry out first space-based measurement of neutron lifetime
Scientists have found a way of measuring neutron lifetime from space for the first time -- a discovery that could teach us more about the early universe.

A single proton can make a heck of a difference
Scientists from the RIKEN Nishina Center for Accelerator-Based Science and collaborators have shown that knocking out a single proton from a fluorine nucleus -- transforming it into a neutron-rich isotope of oxygen -- can have a major effect on the state of the nucleus.

Researchers overcome the space between protons and neutrons to study heart of matter
Nuclear physicists have entered a new era for probing the strongest force in the universe at its very heart with a novel method of accessing the space between protons and neutrons in dense environments.

New neutron detector can fit in your pocket
Researchers at Northwestern University and Argonne National Laboratory have developed a new material that opens doors for a new class of neutron detectors.

Neutrons optimize high efficiency catalyst for greener approach to biofuel synthesis
Researchers led by the University of Manchester used neutron scattering at Oak Ridge National Laboratory in the development of a catalyst that converts biomass into liquid fuel with remarkably high efficiency and provides new possibilities for manufacturing renewable energy-related materials.

Read More: Neutrons News and Neutrons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.