Simple mathematcal pattern describes shape of neuron 'jungle'

June 20, 2012

Neurons come in an astounding assortment of shapes and sizes, forming a thick inter-connected jungle of cells. Now, UCL neuroscientists have found that there is a simple pattern that describes the tree-like shape of all neurons.

Neurons look remarkably like trees, and connect to other cells with many branches that effectively act like wires in an electrical circuit, carrying impulses that represent sensation, emotion, thought and action.

Over 100 years ago, Santiago Ramon y Cajal, the father of modern neuroscience, sought to systematically describe the shapes of neurons, and was convinced that there must be a unifying principle underlying their diversity.

Cajal proposed that neurons spread out their branches so as to use as little wiring as possible to reach other cells in the network. Reducing the amount of wiring between cells provides additional space to pack more neurons into the brain, and therefore increases its processing power.

New work by UCL neuroscientists, published today in Proceedings of the National Academy of Sciences, has revisited this century-old hypothesis using modern computational methods. They show that a simple computer program which connects points with as little wiring as possible can produce tree-like shapes which are indistinguishable from real neurons - and also happen to be very beautiful. They also show that the shape of neurons follows a simple mathematical relationship called a power law.

Power laws have been shown to be common across the natural world, and often point to simple rules underlying complex structures. Dr Herman Cuntz (UCL Wolfson Institute for Biomedical Research) and colleagues find that the power law holds true for many types of neurons gathered from across the animal kingdom, providing strong evidence for Ramon y Cajal's general principle.

The UCL team further tested the theory by examining neurons in the olfactory bulb, a part of the brain where new brain cells are constantly being formed. These neurons grow and form new connections even in the adult brain, and therefore provide a unique window into the rules behind the development of neural trees in a mature neural circuit.

The team analysed the change in shape of the newborn olfactory neurons over several days, and found that the growth of these neurons also follow the power law, providing further evidence to support the theory.

Dr Hermann Cuntz said: "The ultimate goal of neuroscience is to understand how the impenetrable neural jungle can give rise to the complexity of behaviour.

"Our findings confirm Cajal's original far-reaching insight that there is a simple pattern behind the circuitry, and provides hope that neuroscientists will someday be able to see the forest for the trees."
-end-


University College London

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.