Husband-wife team set out to improve breast cancer exams

June 20, 2012

One in eight women in the United States will develop breast cancer over the course of her lifetime.

Lorraine G. Olson, professor of mechanical engineering at the Rose-Hulman Institute of Technology in Terre Haute, Indiana, was diagnosed in 2005 at the age of 45. Fortunately, her breast cancer was caught early from a routine mammogram, but like many women, she was prodded by her physician to do the exam.

"To be honest, I put off my mammogram for months before my primary care physician made an appointment for me," Olson said. "The standard mammogram hurts a fair amount and I didn't think I'd have a problem since I was pretty young."

Mammograms involve placing one breast at a time between two plates that compress and spread the breast tissue, which causes discomfort for most women.

As fate may have it, Olson's husband, Robert Throne, was diagnosed with prostate cancer in 2005 a few months after Olson's diagnosis. Throne is the head of the Department of Electrical and Computer Engineering at Rose-Hulman.

Few cancer survivors are in the position to change the way cancer is diagnosed, but Olson and Throne are doing just that for breast cancer. Together, they have created math models to improve early detection efforts. The research could be instrumental in the development of a new robotic device that will mimic manual breast palpations, enabling doctors to record accurate data about the underlying tissue.

"The device won't replace mammography," Olson said, but the less invasive method could be an affordable, effective tool. For nearly six years, this has been the focal point of the husband-wife research team.

"Cancerous tissues are as much as ten times stiffer than healthy tissues," Olson said. "Manual breast exams are looking at tissue stiffness, but, currently, there isn't a good way to record the results."

To better understand the concept of stiffness, Olson compares it with cheese. A three ounce block of cream cheese and a three ounce block of cheddar cheese are about the same size and density (weight/volume). However, when you probe the block of cheddar cheese it doesn't change shape nearly as much as the cream cheese--that's because cheddar is much stiffer.

Olson and Throne want their system to automate and refine the manual breast exam process. "Step one is to find a way to record accurate results," Olson said. "Step two is to use mathematical techniques to make a picture of what's going on inside the breast tissue in terms of stiffness."

Mammograms use X-rays, which are only sensitive to tissue density, not stiffness.

The new exam would look something like this: A woman lies on an exam table and a ring is placed around her breast; a robotic arm then performs the breast exam and measures how much force it takes and how much the tissue moves.

"This is how we imagine it's going to work, but for now we're just doing computer simulations of the process," Olson says.

To run these simulations quickly and to generate accurate results, Olson is applying the computational power of the resources at the Texas Advanced Computing Center (TACC) at The University of Texas at Austin.

"None of this would have been possible without the resources we used through TACC and XSEDE," Olson said, referring to the National Science Foundation-funded cyberinfrastructure that provides free advanced computing resources and time to researchers across the country. "By using supercomputers I can parallelize the job and finish simulations in minutes."

For the breast cancer research, speed of execution is very important, as a typical genetic algorithm must be iterated many times to produce a usable result for a complex problem. Olson is working with 2D and 3D algorithms to create a picture that represents the variations in tissue stiffness.

"It's quite promising," Olson said. "You can put a tumor about one centimeter across near the middle of the breast tissue, and then run this algorithm--it will tell you that there's a one centimeter tumor in the same location."

During the summer of 2012, Olson and her husband will try to speed up their algorithm's ability to solve problems by a factor of two. They also aim to improve the "fitness function" on their measured data to determine the best way to perform the tests at a clinical level. A fitness function summarizes, as a single figure of merit, how close a given design solution is to achieving the set aims.

In the near future, Olson and Throne plan to move the research from computer simulations to actual experiments and clinical use. The husband-wife team hopes that this new test will become an inexpensive, routine exam performed painlessly and harmlessly as part of an annual checkup even for relatively young women. This would greatly aid in early detection when breast cancer is most treatable.

"My daughter is 21 now," Olson said, "and I need to hurry up with the research because she wants it ready."
-end-


University of Texas at Austin, Texas Advanced Computing Center

Related Breast Cancer Articles from Brightsurf:

Oncotarget: IGF2 expression in breast cancer tumors and in breast cancer cells
The Oncotarget authors propose that methylation of DVDMR represents a novel epigenetic biomarker that determines the levels of IGF2 protein expression in breast cancer.

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.

Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.

More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.

Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.

Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.

Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.

Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.

Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.

Read More: Breast Cancer News and Breast Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.