Nav: Home

Simple reward-based learning suits adolescents best

June 20, 2016

Adolescents focus on rewards and are less able to learn to avoid punishment or consider the consequences of alternative actions, finds a new UCL-led study.The study, published in PLOS Computational Biology, compared how adolescents and adults learn to make choices based on the available information.

18 volunteers aged 12-17 and 20 volunteers aged 18-32 completed tasks in which they had to choose between abstract symbols. Each symbol was consistently associated with a fixed chance of a reward, punishment or no outcome. As the trial progressed, participants learnt which symbols were likely to lead to each outcome and adjusted their choices accordingly.

Adolescents and adults were equally good at learning to choose symbols associated with reward, but adolescents were less good at avoiding symbols associated with punishment. Adults also performed significantly better when they were told what would have happened if they had chosen the other symbol after each choice, whereas adolescents did not appear to take this information into account.

"From this experimental lab study we can draw conclusions about learning during adolescence. We find that adolescents and adults learn in different ways, something that might be relevant to education," explains lead author Dr Stefano Palminteri, who conducted the study at the UCL Institute of Cognitive Neuroscience and now works at the École Normale Supérieure in Paris. "Unlike adults, adolescents are not so good at learning to modify their choices to avoid punishment. This suggests that incentive systems based on reward rather than punishment may be more effective for this age group. Additionally, we found that adolescents did not learn from being shown what would have happened if they made alternative choices."

To interpret the results, the researchers developed computational models of learning and ran simulations applying them to the results of the study. The first was a simple model one that learnt from rewards, and the second model added to this by also learning from the option that was not chosen. The third model was the most complete and took the full context into account, with equal weighting given to punishment avoidance and reward seeking. For example, obtaining no outcome rather than losing a point is weighted equally to gaining a point rather than having no outcome.

Comparing the experimental data to the models, the team found that adolescents' behaviour followed the simple reward-based model whereas adults' behaviour matched the complete, contextual model.

"Our study suggests that adolescents are more receptive to rewards than they are to punishments of equal value," explains senior author Professor Sarah-Jayne Blakemore (UCL Institute of Cognitive Neuroscience). "As a result, it may be useful for parents and teachers to frame things in more positive terms. For example, saying 'I will give you a pound to do the dishes' might work better than saying 'I will take a pound from your pocket money if you don't do the dishes'. In either case they will be a pound better off if they choose to do the dishes, but our study suggests that the reward-based approach is more likely to be effective."
-end-
In your coverage please use this URL to provide access to the freely available article in PLOS Computational Biology: http://dx.plos.org/10.1371/journal.pcbi. pcbi.1004953

Press-only preview: http://blogs.plos.org/everyone/files/2016/06/pcbi.1004953-press-preview-2.pdf

Contact: Name: Stefano Palminteri

Email: Stefano.Palminteri@gmail.com

Citation: Palminteri S, Kilford EJ, Coricelli G, Blakemore S-J (2016) The Computational Development of Reinforcement Learning during Adolescence. PLoS Comput Biol 12(6): e1004953. doi:10.1371/journal.pcbi.1004953

Image Caption: Simple reward-based learning suits adolescents best

Image Credit: ZEISS Microscopy / Flickr

Image Link: http://blogs.plos.org/everyone/files/2016/06/Palminteri-image-1.jpg

Funding: SP is supported by a Marie Sklodowska- Curie Individual European Fellowship (PIEF-GA-2012 Grant 328822). EJK is supported by a Medical Research Council studentship. GC is funded by the European Research Council (ERC Consolidator Grant 617629). SJB is funded by a Royal Society University Research Fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

About PLOS Computational Biology

PLOS Computational Biology (http://www.ploscompbiol.org) features works of exceptional significance that further our understanding of living systems at all scales through the application of computational methods. For more information follow @PLOSCompBiol on Twitter or contact ploscompbiol@plos.org.

Media and Copyright Information

For information about PLOS Computational Biology relevant to journalists, bloggers and press officers, including details of our press release process and embargo policy, visit http://journals.plos.org/ploscompbiol/s/press-and-media .

PLOS Journals publish under a Creative Commons Attribution License, which permits free reuse of all materials published with the article, so long as the work is cited.

About the Public Library of Science

The Public Library of Science (PLOS) PLOS is a nonprofit publisher and advocacy organization founded to accelerate progress in science and medicine by leading a transformation in research communication. For more information, visit http://www.plos.org.

Disclaimer

This press release refers to upcoming articles in PLOS Computational Biology. The releases have been provided by the article authors and/or journal staff. Any opinions expressed in these are the personal views of the contributors, and do not necessarily represent the views or policies of PLOS. PLOS expressly disclaims any and all warranties and liability in connection with the information found in the release and article and your use of such information.

PLOS

Related Learning Articles:

School spending cuts triggered by great recession linked to sizable learning losses for learning losses for students in hardest hit areas
Substantial school spending cuts triggered by the Great Recession were associated with sizable losses in academic achievement for students living in counties most affected by the economic downturn, according to a new study published today in AERA Open, a peer-reviewed journal of the American Educational Research Association.
Lessons in learning
A new Harvard study shows that, though students felt like they learned more from traditional lectures, they actually learned more when taking part in active learning classrooms.
Learning to look
A team led by JGI scientists has overhauled the perception of inovirus diversity.
Sleep readies synapses for learning
Synapses in the hippocampus are larger and stronger after sleep deprivation, according to new research in mice published in JNeurosci.
Learning from experience is all in the timing
Animals learn the hard way which sights, sounds, and smells are relevant to survival.
Learning language
When it comes to learning a language, the left side of the brain has traditionally been considered the hub of language processing.
When it comes to learning, what's better: The carrot or the stick?
Does the potential to win or lose money influence the confidence one has in one's own decisions?
Learning a second alphabet for a first language
A part of the brain that maps letters to sounds can acquire a second, visually distinct alphabet for the same language, according to a study of English speakers published in eNeuro.
Learning to read comes at a cost
Learning how to read may have some disadvantages for learning grammar.
Heartbeat paces learning
The processing of external information varies during the phases of the cardiac cycle, shows a new study from the University of Jyväskylä.
More Learning News and Learning Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.