Nav: Home

A new adjustable optical microprobe for the analysis and control of deep brain regions

June 20, 2017

Researchers from the IIT- Istituto Italiano di Tecnologia in Lecce, Italy, and the Harvard Medical School in Boston, USA, have developed a new optical microprobe able to control brain electrical activity by projecting light on wide volumes or selected portions of the central nervous system in an very controlled fashion. The study was published on Nature Neuroscience and it represents a first step toward low invasiveness devices for the diagnosis and treatment of neurological and psychiatric disorders and neurodegenerative diseases.

The research group was coordinated by IIT's researchers based in Lecce (Italy), Ferruccio Pisanello and Massimo De Vittorio, and by Bernardo Sabatini at Harvard Medical School (HMS) in Boston. Ferruccio Pisanello is in charge of the Multifunctional Neural Interfaces Lab at IIT in Lecce and has been funded by the European Research Council (ERC); Massimo De Vittorio is coordinator of the IIT Center in Lecce and is involved, together with Bernardo Sabatini, in a project funded by the US National Institute of Health (NIH).

The technology is developed for fully exploiting optogenetics, a combination of optics and genetics to activate or inhibit neurons activity by using light beams. One major limitation of optogenetics relies in the difficulty of distributing light into the brain in a controlled fashion, since tissue opacity does not permit light propagation. Italian scientists wanted to overcome this limit. The microprobe, built at the IIT and validated at HMS, is made up of a cone-shaped optical fiber whose tip is about 500 nanometers, 20 times smaller than a neuronal cell, and its design is conceived to adapt the light beam to the cerebral region of interest without moving the device. The great versatility of the device allows to irradiate brain areas with tunable light intensity, color, position, direction and frequency.

The microprobe allowed to access sub-cortical regions with a minimally invasive device, hihglighing the link between the electrochemical activity of spatially-separated groups of neurons and related effects on locomotion control in animal models. The probe, indeed, allows to activate or inhibit one or more neural microcircuits at the same time, representing a new paradigm for deep brain optical stimulation.

The results are part of the MODEM project, coordinated by Ferruccio Pisanello and funded by the European Research Council (ERC) with a Starting grant since 2016. The final goal of his research project is to develop a very low-invasive device, enabling a direct intervention on the brain to monitor its activity and to restore its proper operation. In the future, the microprobe may be the basis for a new generation of therapeutic and prosthetic devices for the control of neurological disorders and neurodegenerative diseases.

Istituto Italiano di Tecnologia - IIT

Related Neurodegenerative Diseases Articles:

Inhibition of sphingolipid metabolism and neurodegenerative diseases
Disrupting the production of a class of lipids known as sphingolipids in neurons improved symptoms of neurodegeneration and increased survival in a mouse model.
How understanding the dynamics of yeast prions can shed light on neurodegenerative diseases
How understanding the dynamics of yeast prions can shed light on neurodegenerative diseases
New family of molecules to join altered receptors in neurodegenerative diseases
An article published in the Journal of Medicinal Chemistry shows a new family of molecules with high affinity to join imidazoline receptors, which are altered in the brain of those patients with neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's.
Examining diagnoses of stress-related disorders, risk of neurodegenerative diseases
Researchers investigated how stress-related disorders (such as posttraumatic stress disorder, adjustment disorder and stress reactions) were associated with risk for neurodegenerative diseases, including Alzheimer and Parkinson disease and amyotrophic lateral sclerosis (ALS), using data from national health registers in Sweden.
Toxic protein, linked to Alzheimer's and neurodegenerative diseases, exposed in new detail
The protein tau has long been implicated in Alzheimer's and a host of other debilitating brain diseases.
Study uncovers unexpected connection between gliomas, neurodegenerative diseases
New basic science and clinical research identifies TAU, the same protein studied in the development of Alzheimer's, as a biomarker for glioma development.
Neurodegenerative diseases may be caused by transportation failures inside neurons
Protein clumps are routinely found in the brains of patients with neurodegenerative diseases.
Study suggests a protein could play key role in neurodegenerative diseases
Research led by Queen Mary University of London and the University of Seville around one protein's role in regulating brain inflammation could improve our understanding of neurodegenerative diseases.
Beyond finding a gene: Same repeated stretch of DNA in three neurodegenerative diseases
Four different rare diseases are all caused by the same short segment of DNA repeated too many times, a mutation researchers call noncoding expanded tandem repeats.
Protein complex may help prevent neurodegenerative diseases
The protein complex NAC in the cell helps to prevent the aggregration of proteins associated with several neurodegenerative diseases.
More Neurodegenerative Diseases News and Neurodegenerative Diseases Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Biology Of Sex
Original broadcast date: May 8, 2020. Many of us were taught biological sex is a question of female or male, XX or XY ... but it's far more complicated. This hour, TED speakers explore what determines our sex. Guests on the show include artist Emily Quinn, journalist Molly Webster, neuroscientist Lisa Mosconi, and structural biologist Karissa Sanbonmatsu.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

The Wubi Effect
When we think of China today, we think of a technological superpower. From Huweai and 5G to TikTok and viral social media, China is stride for stride with the United States in the world of computing. However, China's technological renaissance almost didn't happen. And for one very basic reason: The Chinese language, with its 70,000 plus characters, couldn't fit on a keyboard.  Today, we tell the story of Professor Wang Yongmin, a hard headed computer programmer who solved this puzzle and laid the foundation for the China we know today. This episode was reported and produced by Simon Adler with reporting assistance from Yang Yang. Special thanks to Martin Howard. You can view his renowned collection of typewriters at: Support Radiolab today at