New perspective: Vegetation phenology variability based on tibetan plateau tree-ring data

June 20, 2017

How vegetation phenology on the Tibetan Plateau (TP), the earth's largest surface area above 4000 m ASL, responds to climate change, in particular to rising temperatures, has attracted much attention in recent years. An increase in growth activity of high-elevation vegetation on the TP may have a considerable impact on the regional carbon budget.

One widely used method for vegetation phenology is collection of satellite remote sensing data. However, divergent results from analysis of remote sensing results have been obtained regarding the rate of change in spring phenology and its relation to climatic drivers on the TP.

Furthermore, satellite remote sensing records only cover the last 30 years, thus significantly limiting the statistical confidence we can place in such methods of trend detection. A dataset that covers a much longer period is needed to resolve current disagreements.

Recently, a research group headed by Prof. YANG Bao from the Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources of the Chinese Academy of Sciences, together with coauthors from Russia, Germany, Canada and Sweden, has reconciled these conflicting results based on a 55-year series of vegetation phenology for the TP derived from well-validated process-based Vaganov-Shashkin model (V-S) simulations of tree-ring growth data.

The results have been published in the journal PNAS in an article entitled "New Perspective on Spring Vegetation Phenology and Global Climate Change Based on Tibetan Plateau Tree-ring Data."

The researchers found that the start of the growing season (SOS) advanced on average 0.28 days/year over the period 1960-2014. The end of the growing season (EOS) was delayed an estimated 0.33 days/year during the period 1982-2014.

No significant changes in SOS or EOS were observed from 1960-1981. April-June and August-September minimum temperatures are the main climatic drivers for SOS and EOS, respectively. An increase of 1°C in the April-June minimum temperature shifted the dates of xylem phenology by 6-7 days, lengthening the period of tree-ring formation.

This approach could be extended to other forested regions of the world. Scaling up the analysis would provide additional information on phenological responses of terrestrial ecosystems to ongoing climate change across the Northern Hemisphere.

This research was financially supported by the National Natural Science Foundation of China and the Alexander von Humboldt Foundation.
-end-


Chinese Academy of Sciences Headquarters

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.