Nav: Home

Innovative autonomous system for identifying schools of fish

June 20, 2018

The University of Haifa (Israel) and two teams from the IMDEA Networks Institute have developed an innovative autonomous system, SYMBIOSIS, to monitor real-time schools of fish. This system, which combines optical and acoustic technologies, will be environmentally friendly and will provide reliable information about the condition of marine fish stocks, something that at the moment is practically impossible to achieve without investing enormous resources.

The SYMBIOSIS system integrates acoustic and optical technologies without human intervention. The system is the product of an international scientific initiative under the EU's Horizon 2020 program. Real-time monitoring of schools of fish will inform the development of fishing policy and lead to enhanced protection of the marine environment.

An international scientific initiative under the auspices of the European Union's Horizon 2020, project SYMBIOSIS is developing an autonomous system to identify schools of fish, including information about their size and movements in deep waters. The University of Haifa is leading the project, while two teams from IMDEA Networks Institute in Madrid are contributing to the development effort. The SYMBIOSIS system integrates acoustic and optical technologies that require no human intervention, and will be able to transmit real-time warnings to coastal stations. These data will contribute to the formulation of ocean fishing policies and to enhanced protection of the marine environment.

"The system will be environmentally friendly, not only in its operation which will be non-invasive and won't impact the marine ecosystem, but more importantly because it will provide reliable information about the condition of marine fish stocks. At present, it's virtually impossible to collect such information without investing enormous resources. Using the latest optical and acoustic technology, we hope to change attitudes towards marine resources", explained Dr. Roee Diamant of the School of Marine Sciences at the University of Haifa, who is coordinating the initiative.

The development of fishing technology since the twentieth century has resulted in the growing realization that fishing is one of the most serious problems facing marine ecosystems. According to some estimates, if over-fishing is not brought under control, the world's fish stocks may collapse by 2048. Global fishing authorities are hoping to curb over-fishing with new regulations and enforcement based on fish stocks. But, there are very few methods presently available for real-time monitoring of those stocks. Most involve surface boats attempting to locate schools of fish using sonars. According to Dr. Diamant, these methods require considerable resources and personnel to monitor and interpret the sonar findings. Consequently, they have limited viability in cost-benefit terms. Also, the use of sonar usually limits the search for fish stocks to narrow areas (those beneath the ship doing the sampling), impairing any subsequent decision-making. The limited statistics provided by this random and short-term sampling of the marine environment mean the process is prone to numerous sampling errors.

Combining optical and acoustic technologies, the SYMBIOSIS system will monitor the marine environment, and in particular the size of the fish stock, within a radius of one kilometer. It works on an entirely autonomous basis, collecting underwater data over long periods and transmitting this information to a coastal center. The research is focusing on the identification of six large fish species that are in especially high demand from the fishing industry: two species of tuna; scad (a species of mackerel; Trachurus mediterraneus); Atlantic mackerel (Scomber scombrus); mahi-mahi (Coryphaena hippurus); and swordfish (Xiphias gladius). This will provide authorities with concrete and actionable information.

The solution has a processing chain that begins with the acoustic discovery and classification of fish, based on their typical speed and movement characteristics. Acoustic sensors also measure the size of the fish and the total biomass of the fish in the area. Once the acoustic system identifies one of the six selected species, it activates the optical system, which features several cameras and sophisticated data processing with various image identification algorithms using deep learning. When the optical system confirms the identification of one of the six selected species, it transmits the information via underwater acoustic communications, and then by radio communications to a coastal station.

IMDEA Networks' researchers are focused on the design of an efficient fish localization system, and on the visual recognition of the selected fish species. The two teams from the Madrid-based research institute are the Ubiquitous Wireless Networks laboratory led by Dr. Paolo Casari, IMDEA PI and Scientific Manager for the project; and the Global Computing Group led by Dr. Antonio Fernandez Anta.

"Using acoustics to localize specific fish species is very challenging"; said Dr. Casari. "Firstly, the acoustic processing chain has to incorporate cost-effective components, and it needs to be highly energy-efficient. The signal processing algorithms deployed in the acoustic fish identification system have to strike a good tradeoff between complexity and accuracy. On top of this, the underwater environment contains many background acoustic noise sources and reflectors, and the signals from fish around the SYMBIOSIS system will be much weaker than acoustic interference coming from the environment. The algorithms need to be robust enough to cope with these shortcomings."

"For optics, the marine environment is characterized by low visibility and elements in the water volume that distorts the image. The big challenge is to secure good detection performances and to minimize false alarms. This needs to happen autonomously in a deep-sea environment, where there's practically no possibility of human intervention," continues Dr. Diamant.

"The optical classification of fish species has its own particular challenges, too. There are very few pre-classified images available with which to train the deep-learning classifier. And many of the images that are available were taken under very different visibility conditions to those the system will encounter. In SYMBIOSIS, we are dealing with this uncertainty by leveraging public databases of fish pictures, many of them provided by scuba divers and underwater photographers. To address the lack of a large image dataset, we are starting with pre-trained neural networks for object recognition, and we'll add more images from SYMBIOSIS test environments once we enter the experimental phase of the project," concludes Dr. Fernández Anta.

SYMBIOSIS was selected for funding by the European Commission's research and innovation programme, Horizon2020. Four institutions are participating in the SYMBIOSIS project: the University of Haifa, Israel (coordinator); IMDEA Networks Institute in Madrid, Spain; Wireless & More company from Italy and EvoLogics Gmbh from Germany. The project includes the development of innovative discovery and classification algorithms, the application of dedicated hardware, and the completion of a large number of marine trials. As part of the project, a prototype is being developed including a system of acoustic sensors, a network of cameras, sophisticated processing units, and an energy unit permitting autonomous activity. The goal of the project is to sample the performances of the prototype system in three different marine environments: shallow Mediterranean, deep Mediterranean, and a tropical environment in the Canary Islands. The project will run until November 2020, and will offer novel solutions to the distributed and large-scale monitoring of the underwater environment, with a positive impact on marine biology research, conservation, and policy making for fisheries in Europe and worldwide.
-end-


IMDEA Networks Institute

Related Fishing Articles:

Fishing less could be a win for both lobstermen and endangered whales
A new study by researchers at Woods Hole Oceanographic Institution (WHOI) found that New England's historic lobster fishery may turn a higher profit by operating with less gear in the water and a shorter season.
'Pingers' could save porpoises from fishing nets
Underwater sound devices called 'pingers' could be an effective, long-term way to prevent porpoises getting caught in fishing nets with no negative behavioural effects, newly published research suggests.
Fishing can disrupt mating systems
In many fish species body size plays an important role in sexual selection.
Oversight of fishing vessels lacking, new analysis shows
Policies regulating fishing in international waters do not sufficiently protect officials who monitor illegal fishing, the prohibited dumping of equipment, or human trafficking or other human rights abuses, finds a new analysis by a team of environmental researchers.
Microplastics from ocean fishing can 'hide' in deep sediments
Microplastic pollution in the world's oceans is a growing problem, and most studies of the issue have focused on land-based sources, such as discarded plastic bags or water bottles.
Neither fishing tales nor sailor's yarn
An international team led by Robert Arlinghaus from the Leibniz Institute of Freshwater Ecology and Inland Fisheries and the Humboldt-Universität zu Berlin have developed a method for combining the empirical knowledge of fishery stakeholders in such a way that the result corresponds to the best scientific understanding.
Lights on fishing nets save turtles and dolphins
Placing lights on fishing nets reduces the chances of sea turtles and dolphins being caught by accident, new research shows.
Another casualty of climate change? Recreational fishing
Another casualty of climate change will likely be shoreline recreational fishing, according to new research.
Longline fishing hampering shark migration
Longline fisheries around the world are significantly affecting migrating shark populations, according to an international study featuring a University of Queensland researcher.
Fishing leads to investigation of environmental changes in waterways
A fisherman's curiosity led to identification of the correlation between microbial communities in recreational freshwater locales and seasonal environmental changes, according to a team of researchers from Penn State.
More Fishing News and Fishing Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.