Slime travelers

June 20, 2019

New UC Riverside-led research settles a longstanding debate about whether the most ancient animal communities were deliberately mobile. It turns out they were, because they were hungry.

"This is the first time in the fossil record we see an animal moving to get food," said study lead Scott Evans, a UCR paleontology doctoral candidate.

Evans' team demonstrated that the 550-million-year-old ocean-dwelling creatures moved on their own rather than being pushed around by waves or weather. The research answers questions about when, why and how animals first developed mobility.

The team searched for evidence of movement in more than 1,300 fossils of Dickinsonia, dinner-plate-shaped creatures up to a meter long that lived and fed on a layer of ocean slime.

Details of the team's analysis were published this month in the journal Geobiology. It found that Dickinsonia move like worms, constricting and relaxing their muscles to go after their next meal of microorganisms.

Dickinsonia were first discovered in the 1940s and since then, scientists have debated whether the fossils showed evidence of self-directed movement. To test this, it was crucial that Evans be able to analyze how multiple creatures living in the same area behaved relative to one another.

Evans and study co-author Mary Droser, a UCR professor of paleontology, reasoned that if Dickinsonia were riding waves or caught in storms, then all the individuals in the same area would have been moved in the same direction. However, that isn't what the evidence shows.

"Multiple fossils within the same community showed random movement not at all consistent with water currents," Evans said.

Critically, Evans was able to use fossil communities in the Australian outback unearthed by Droser and paper co-author James Gehling of the South Australian Museum. The duo systematically excavated large bed surfaces containing as many as 200 Dickinsonia fossils, allowing Evans to test whether the groups of the animals moved in the same or different directions, Evans said.

The team also analyzed the directions traveled by individual Dickinsonia.

"Something being transported by current should flip over or be somewhat aimless," Evans said. "These movement patterns clearly show directionality based on the animals' biology, and that they preferred to move forward."

Future studies at UCR will try to determine what Dickinsonia bodies were made of. "The tissues of the animals are not preserved, so it's not possible to directly analyze their body composition," he said. "But we will look at other clues they left behind."

Understanding Dickinsonia's capabilities offers insight not only into the evolution of animal life on Earth, but also about the Earth itself and possibly about life on other planets.

"If we want to search for complex life on other planets, we need to know how and why complex life evolved here," Evans said. "Knowing the conditions that enabled large mobile organisms to move during the Ediacaran era, 550 million years ago, gives us a clue about the habitable zone elsewhere."

That Dickinsonia could move helps confirm a large amount of oxygen was available in Earth's oceans during that time period, since it would have been required to fuel their movement. In a related study, Evans explored a spike in ocean oxygen levels during the Ediacaran period. Later, when oxygen levels dropped, Evans said that Dickinsonia - and things like them - went extinct.

University of California - Riverside

Related Fossils Articles from Brightsurf:

First exhaustive review of fossils recovered from Iberian archaeological sites
The Iberian Peninsula has one of the richest paleontological records in Western Europe.

Fossils reveal mammals mingled in age of dinosaurs
A cluster of ancient mammal fossils discovered in western Montana reveal that mammals were social earlier than previously believed, a new study finds.

Oldest monkey fossils outside of Africa found
Three fossils found in a lignite mine in southeastern Yunan Province, China, are about 6.4 million years old, indicate monkeys existed in Asia at the same time as apes, and are probably the ancestors of some of the modern monkeys in the area, according to an international team of researchers.

Scientists prove bird ovary tissue can be preserved in fossils
A research team led by Dr. Alida Bailleul from the Institute of Vertebrate Paleontology and Paleoanthropology (IVPP) of the Chinese Academy of Sciences has proved that remnants of bird ovaries can be preserved in the fossil record.

Biosignatures may reveal a wealth of new data locked inside old fossils
Step aside, skeletons -- a new world of biochemical ''signatures'' found in all kinds of ancient fossils is revealing itself to paleontologists, providing a new avenue for insights into major evolutionary questions.

Fish fossils become buried treasure
Rare metals crucial to green industries turn out to have a surprising origin.

New Argentine fossils uncover history of celebrated conifer group
Newly unearthed, surprisingly well-preserved conifer fossils from Patagonia, Argentina, show that an endangered and celebrated group of tropical West Pacific trees has roots in the ancient supercontinent that once comprised Australia, Antarctica and South America, according to an international team of researchers.

Ancestor of all animals identified in Australian fossils
A team led by UC Riverside geologists has discovered the first ancestor on the family tree that contains most animals today, including humans.

Metabolic fossils from the origin of life
Since the origin of life, metabolic networks provide cells with nutrition and energy.

Fossils of the future to mostly consist of humans, domestic animals
In a co-authored paper published online in the journal Anthropocene, University of Illinois at Chicago paleontologist Roy Plotnick argues that the fossil record of mammals will provide a clear signal of the Anthropocene era.

Read More: Fossils News and Fossils Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to