Nav: Home

One step closer to chronic pain relief

June 20, 2019

Sortilin, which is a protein expressed on the surface of nerve cells, plays a crucial role in pain development in laboratory mice - and in all likelihood in humans as well. This is the main conclusion of the study 'Sortilin gates neurotensin and BDNF signalling to control peripheral neuropathic pain', which has just been published in the journal Science Advances.

The results are based on a decade of basic research, and even though studies on mice have only been done so far, the study provides hope for the development of a medicine that can help people with pain induced by nerve injury - called neuropathic pain by medical professionals.

This pain may be triggered by an acute injury or a chronic disease such as e.g. diabetes in the pain pathways and is characterised by different sensations including burning, pricking, stinging, tingling, freezing or stabbing in a chronic and disabling way.

The patients have in common that they could fill a shopping basket with pain killers ranging from local anaesthetic ointments to morphine "without ever really getting any good results" as the primary author of the article, Assistant Professor Mette Richner, puts it. She is employed at the Department of Biomedicine and the DANDRITE research centre, both part of Aarhus University, Denmark.

Mette Richner explains that chronic pain is triggered by overactive nerve cells, i.e. nerve cells where the regulation of their activity is not working properly. For this reason, it is necessary to gain knowledge of the changes happening at the molecular level to be able to 'nudge things into place again'.

"And it's here, at the molecular level, that we've now added a crucial piece to a larger puzzle," says Mette Richner, who explains that sortilin - and now things get a little convoluted - appears to 'put the brakes on the brake' which, at the molecular level, stops the body's pain development.

"Once nerve damage has occurred, and the nerve cells go into overdrive, molecules are released which start a domino effect that ultimately triggers pain. The domino effect can be inhibited by a particular molecule in the spinal cord called neurotensin, and our studies show that the neurotensin is 'captured' by sortilin, so that the brake is itself inhibited," explains Mette Richner, who began on the project as a PhD student in Professor Anders Nykjaer's group and subsequently completed it as a postdoc in Associate Professor's Christian B. Vaegter's research group. Both are last authors of the study.

The research group's hope is that the pharmaceutical industry will continue to investigate whether it is possible to block sortilin locally in the spinal cord, so that the neurotensin can move freely and get the brake to function, thereby inhibiting the pain. In connection with this, Christian Vaegter emphasises that there is obviously a way to go from mouse to human being.

"Our research is carried out on mice, but as some of the fundamental mechanisms are quite similar in humans and mice, it still gives an indication of what is happening in people suffering from chronic pain," says Christian Vaegter.

The idea of studying the complicated pain-related puzzle in relation to the spinal cord arises from a decade's worth of research into both pain and sortilin. The initial studies revolved around mice that lack the ability to form sortilin and were apparently pain-free despite nerve damage - and of course the studies were done in accordance with methods approved by the Danish Animal Experiments Inspectorate.

The research group could subsequently ascertain that neither did normal mice develop pain after nerve damage when the researchers blocked sortilin - and from here the hunt for the correlation began, before it was ultimately explained by the regulation of the pain inhibiting molecule neurotensin.

Cronic pain in brief

Around eight percent of the population suffer from neuropathic pain, and the number of sufferers is expected to increase in step with longer life expectancy and more lifestyle diseases.

It is triggered by chronic diseases such as e.g. diabetes and multiple sclerosis and affects around one third of people in these two groups of patients. Chronic pain frequently occurs following amputations and is seen in almost seven out of ten patients with brain and spinal cord injuries. Chronic pain also affects seven out of ten patients receiving chemotherapy.

Chronic pain can occur in all parts of the body and is triggered by nerve damage. In principle, the cause could be a bicycle accident (deep wounds, serious blows), sports injuries, amputation, chemotherapy or autoimmune diseases.

Chronic pain is defined by pain which has failed to disappear three months after the wound has healed.
-end-


Aarhus University

Related Chronic Pain Articles:

Breastfeeding may protect against chronic pain after Caesarean section
Breastfeeding after a Caesarean section (C-section) may help manage pain, with mothers who breastfed their babies for at least two months after the operation three times less likely to experience persistent pain compared to those who breastfed for less than two months, according to new research being presented at this year's Euroanaesthesia Congress in Geneva (June 3-5).
Unexpected mechanism behind chronic nerve pain
It has long been assumed that chronic nerve pain is caused by hypersensitivity in the neurons that transmit pain.
Chronic pain amplifies the brain's reaction to new injuries
Chronic pain in any one body part may distort the intensity with which a key brain region perceives pain everywhere else.
How doubts about getting better influence chronic pain treatment success
A leading psychology professor at The University of Texas at Arlington has focused international attention on how a chronic pain patient's irrational doubts about never getting better can influence both his reactions to pain and even treatment outcomes.
New study finds reading can help with chronic pain
A study conducted by researchers from the University of Liverpool, The Reader and the Royal Liverpool University Hospitals Trust, and funded by the British Academy, has found that shared reading (SR) can be a useful therapy for chronic pain sufferers.
Can staying active help to prevent chronic pain? Physical activity affects pain modulation in older adults
Older adults with higher levels of physical activity have pain modulation patterns that might help lower their risk of developing chronic pain, reports a study in PAINĀ®, the official publication of the International Association for the Study of Pain (IASP).
Poor and less educated suffer the most from chronic pain
Poorer and less-educated older Americans are more like to suffer from chronic pain than those with greater wealth and more education, but the disparity between the two groups is much greater than previously thought, climbing as high as 370 percent in some categories, according to new research by a University at Buffalo medical sociologist.
New study to investigate role of sleep in chronic pain
Washington State University will lead a study to understand the relationship between sleep and chronic pain, part of a nationwide effort to address the rising abuse of opioid pain relievers and expand the arsenal of non-drug treatment options.
UK study to help chronic pain sufferers back to work
Researchers from the University of Warwick's Medical School are leading a novel study to explore ways of helping people with chronic pain back to work.
Chronic pain linked to partners of people with depression
Partners of people with depression are more likely to suffer from chronic pain, research from the University of Edinburgh has found.

Related Chronic Pain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...