Nav: Home

A study from IRB Barcelona describes the reaction mechanism of DNAzymes

June 20, 2019

A study from the Institute for Research in Biomedicine (IRB Barcelona) has published a study in the journal Nature Catalysis that describes the reaction mechanism used by the DNAzyme 9DB1, the first structurally available catalyser formed by DNA.

Until recently, it was widely assumed that DNA served to store genetic information in a stable and irreversible manner. However, in the last ten years, the discovery of the epigenetic code and the finding that nucleic acids can also catalyse certain reactions have changed this vision.

The team headed by Modesto Orozco, head of the Molecular Modelling and Bioinformatics Lab at IRB Barcelona, found that this DNAzyme catalyses RNA ligation through a similar mechanism to that used by natural enzymes.

The conclusion drawn by the study may lead to improvements in current catalysers and in the design of novel biocatalysers formed by DNA. Indeed, given that DNAzymes can carry out a variety of reactions on messenger RNA and can trigger the silencing of genes, they are being developed for diagnostic and biomedical applications.

"The role of DNAzymes as catalysers is of great interest since they are easier to synthesise than proteins and RNA molecules, as well as being more stable and less expensive. However, to date, the catalytic mechanism used by DNAzymes was unknown, as were the differences between catalysers made of DNA and RNA or the protein enzymes," says Orozco, senior professor at the University of Barcelona.

The study published by the IRB Barcelona team aimed to unravel the details of the catalytic mechanism of DNAzymes. To this end, Juan Aranda and Montserrat Terrazas, postdoctoral fellows at IRB Barcelona and first authors of the work, studied DNAzyme 9DB1 at the atomic level using computational simulations and then experimentally validated their findings.

The various computational techniques, ranging from molecular dynamics to the combined use of quantum mechanics and classical mechanics, included in the study have allowed the characterisation of the catalytic state of 9DB1. Using these approaches, the researchers have achieved the first atomic description of the reaction mechanism of a DNAzyme and have characterised the most important interaction in the catalysis and in the transition state of the reaction.

They have experimentally synthesised in vitro variants of 9DB1 to confirm the mechanism that was predicted through the computational approach. The reaction mechanism used by the DNAzyme resembles that of polymerases, which use two divalent cations.

Finally, the scientists have analysed the differences and similarities between the catalytic capacity of DNA, RNA and polymerases. Such atomic information is expected to lead to the design of more efficient DNAzymes.
-end-
The study has been funded by the Ministry of Science, Innovation and Universities, the Catalan Government, the Spanish National Bioinformatics Institute, the European Research Council (ERC), the Horizon 2020 Programme of the European Union, and the European Regional Development Fund (ERDF).

Reference article:

Juan Aranda, Montserrat Terrazas, Hansel Gómez, Núria Villegas y Modesto Orozco
An artificial DNAzyme RNA ligase shows a reaction mechanism resembling that of cellular polymerases
Nature Catalysis (2019) DOI: 10.1038/s41929-019-0290-y

Institute for Research in Biomedicine (IRB Barcelona)

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
More Dna News and Dna Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...