Treatment for common cause of diarrhea more promising

June 20, 2019

One of the most common causes of diarrhea worldwide - accounting for millions of cases and tens of thousands of deaths, mostly of small children - is the parasite Cryptosporidium. Doctors can treat children with Cryptosporidium for dehydration, but unlike many other causes of diarrhea, there are no drugs to kill the parasite or vaccines to prevent infection.

Now, researchers at Washington University School of Medicine in St. Louis have figured out how to grow the most common type of Cryptosporidium in the lab, a technological advance that will accelerate efforts to treat the deadly infection.

"This parasite was described over 100 years ago, and scientists have never been able to reliably grow it in the lab, which has hampered our ability to understand the parasite and develop treatments for it," said senior author L. David Sibley, PhD, the Alan A. and Edith L. Wolff Distinguished Professor of Molecular Microbiology. "We now have a way to cultivate it, propagate it, modify its genes and start figuring out how it causes disease in children. This is a first step toward screening potential drugs and finding new drugs or vaccine targets."

The findings are published online June 20 in Cell Host & Microbe.

In wealthy countries, Cryptosporidium is notorious for causing water-borne outbreaks of diarrhea. The parasite goes through a complex life cycle, including a stage in which it is called an oocyst and becomes hardy, spore-like and hard to kill with chlorine, bleach or other routine sanitation measures. In 1993, 400,000 people in the Milwaukee area developed diarrhea, stomach cramps and fever after a malfunctioning water purification plant allowed Cryptosporidium into the city's water supply. Every year, dozens of smaller outbreaks are reported in the U.S., many associated with swimming pools and water playgrounds.

Diarrhea caused by the parasite can last for weeks. While this is miserable for otherwise healthy people, it can be life-threatening for undernourished children and people with compromised immune systems.

Until now, researchers who wanted to study the parasite had to obtain oocysts from infected calves - Cryptosporidium infection is a serious problem in commercial cattle farming - and grow the parasites in human or mouse cell lines. The parasite inevitably would die after a few days without going through a complete life cycle, so the researchers would have to obtain more oocysts from cattle to do more experiments.

Sibley, along with co-first authors Georgia Wilke, PhD, who is a student in the Medical Scientist Training Program, and postdoctoral researcher Lisa Funkhouser-Jones, PhD, suspected that the problem lay in the cell lines traditionally used to grow the parasite. Derived from cancer cells, these cell lines were very different from the normal, healthy intestine that is the parasites' usual home.

To create a more natural environment, the researchers collaborated with Thaddeus S. Stappenbeck, MD, PhD, the Conan Professor of Laboratory and Genomic Medicine and a co-author on the paper. Stappenbeck and colleagues cultured intestinal stem cells to become "mini-guts" in a dish - complete with all the cell types and structural complexity of a real intestine.

When the researchers added oocysts to the mini-guts, the parasites thrived. They emerged from the oocysts and went through their full life cycle to produce more oocysts. For the first time, every stage of the parasite's complicated life cycle could be studied in the lab. The researchers also showed that they could edit the parasite's genes with CRISPR/Cas9 and perform genetic crosses, making these powerful tools for studying biology more accessible than before.

"We put the parasite in this environment that is much more natural, and it's happy and it grows and develops and goes through the entire life cycle," Sibley said. "This opens up possibilities that were closed for a long time. There is only one FDA-approved drug, and it doesn't work in young children. There are potential drug candidates, but we couldn't screen them before because the parasites would just die anyway. How can you tell if the drug is killing the parasites if they are already dying? Now we can start screening drugs and also start asking questions about what makes this parasite dangerous."

The technique applies only to C. parvum, one of the two most common Cryptosporidium species that cause diarrhea in people. Its cousin C. hominis is even more difficult to grow in the lab. The two are closely related, but while C. parvum can infect young mammals of many species, C. hominis only infects people.

"There are only a few dozen genes that are different between parvum and hominis but somehow that's enough to make hominis very finicky," Sibley said. "It won't grow in mice or in calves or, so far, in mini-guts grown from mouse stem cells. Developing systems to work with hominis is an important goal of my lab."

The technique, while potentially powerful, will not immediately translate into better treatment or prevention for diarrhea, Sibley cautioned.

"These things take time," Sibley said. "There's a lot of basic research that still needs to be done. But this system provides an important path forward. We can now use genetic approaches to study the role of individual genes and thereby identify important targets for improved therapies."
-end-


Washington University School of Medicine

Related Parasites Articles from Brightsurf:

When malaria parasites trick liver cells to let themselves in
A new study led by Maria Manuel Mota, group leader at Instituto de Medicina Molecular, now shows that malaria parasites secrete the protein EXP2 that is required for their entry into hepatocytes.

How deadly parasites 'glide' into human cells
A group of scientists led by EMBL Hamburg's Christian Löw provide insights into the molecular structure of proteins involved in the gliding movements through which the parasites causing malaria and toxoplasmosis invade human cells.

How malaria parasites withstand a fever's heat
The parasites that cause 200 million cases of malaria each year can withstand feverish temperatures that make their human hosts miserable.

New studies show how to save parasites and why it's important
An international group of scientists published a paper, Aug. 1, 2020, in a special edition of the journal Biological Conservation that lays out an ambitious global conservation plan for parasites.

More flowers and pollinator diversity could help protect bees from parasites
Having more flowers and maintaining diverse bee communities could help reduce the spread of bee parasites, according to a new study.

How Toxoplasma parasites glide so swiftly (video)
If you're a cat owner, you might have heard of Toxoplasma gondii, a protozoan that sometimes infects humans through contact with contaminated feces in litterboxes.

Parasites and the microbiome
In a study of ethnically diverse people from Cameroon, the presence of a parasite infection was closely linked to the make-up of the gastrointestinal microbiome, according to a research team led by Penn scientists.

Clocking in with malaria parasites
Discovery of a malaria parasite's internal clock could lead to new treatment strategies.

Feeding bluebirds helps fend off parasites
If you feed the birds in your backyard, you may be doing more than just making sure they have a source of food: you may be helping baby birds give parasites the boot.

Scientists discover how malaria parasites import sugar
Researchers at Stockholm University has established how sugar is taken up by the malaria parasite, a discovery with the potential to improve the development of antimalarial drugs.

Read More: Parasites News and Parasites Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.