Nav: Home

Pigs help scientists understand human brain

June 20, 2019

Athens, Ga. - For the first time, researchers in the University of Georgia's Regenerative Bioscience Center have used an imaging method normally reserved for humans to analyze brain activity in live agricultural swine models, and they have discovered that pig brains are even better platforms than previously thought for the study of human neurological conditions such as Alzheimer's and Parkinson's.

One immediate potential application is in the study and diagnosis of CTE, a progressive brain disease caused by a series of blunt trauma usually seen in military veterans and NFL football players. Currently CTE can be diagnosed only through an autopsy. The new study strongly suggests that a translational swine model for mapping functional brain connectivity is a promising approach to determine biomarkers or brain signatures that lead to CTE. Using this type of data, doctors would have the opportunity to diagnose CTE while a veteran or athlete is still alive.

By using resting-state functional magnetic resonance imaging (rs-fMRI), the researchers demonstrated functional connectivity in sensorimotor regions of the swine brain that parallels to that of the human brain. These regions include those where all our perceptions, feelings, movements and memories are encoded. The similarities of these functional networks, as published in the journal Brain Connectivity, set the stage for targeted clinical applications in the treatment and prevention of neurological disorders.

Franklin West, associate professor of animal and dairy science in College of Agricultural and Environmental Sciences, and his RBC collaborator, Qun Zhao, drew comparisons between sensory and cognitive relevance found in swine and those previously established in humans.

"Most of the models to-date deal with structural comparisons," said Zhao, associate professor of physics in the Franklin College of Arts and Sciences. "Our model goes beyond brain mass and allows us to address questions related to brain connectivity and memory function. Without a functional map of the brain it's hard to tell what parts of the brain are talking to each other."

Previous research has shown that shape and exact location of brain regions interact strongly with the modeling of brain connectivity. For years, researchers have posited that the shape and size of a swine brain bears physiological and anatomical similarities to the human brain, and therefore swine are considered a good animal model for neurological disease. However, according to the RBC team, scientists have not yet developed a unique model that captures functional connectivity or details the wiring diagram of the brain.

Neuroimaging typically helps researchers identify which regions of the brain activate when a person carries out a task; such as the simple task of starting a car. In order to turn on your car, you first have to look, then find, where to insert the key, as your brain takes visual cues and stimulates different parts of your arm to complete the action. Each part of your arm activates a different part of the brain in the act of inserting the key. If there's any interruption in the connections, those functions don't happen.

Those interrupted connections play a role in neurological disorders, such as Alzheimer's disease, Parkinson's disease, chronic traumatic encephalopathy (CTE) and autism. With any of these disorders, the RBC collaborators can now model a 360-degree view of which parts of the brain are no longer talking to each other and which centers in the brain are being reactivated and reconnected.

"What this new model allows and has never been done before," West said, "is for researchers to ask more refined questions about how the brain talks to itself, functions and coordinates action."

"What we tend to say is the brain is a black box and we don't know how it works," said West. "This study is a game changer. It gives us a light to shine inside the box."
-end-
In addition to those listed above, the study's co-authors include Gregory Simchick and Alice Shen, both from the MRI physics lab, led by Zhao.

The study, "Pig Brains Have Homologous Resting State Networks with Human Brains," is available online at https://www.liebertpub.com/doi/abs/10.1089/brain.2019.0673

University of Georgia

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
More Brain News and Brain Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.