Nav: Home

Pigs help scientists understand human brain

June 20, 2019

Athens, Ga. - For the first time, researchers in the University of Georgia's Regenerative Bioscience Center have used an imaging method normally reserved for humans to analyze brain activity in live agricultural swine models, and they have discovered that pig brains are even better platforms than previously thought for the study of human neurological conditions such as Alzheimer's and Parkinson's.

One immediate potential application is in the study and diagnosis of CTE, a progressive brain disease caused by a series of blunt trauma usually seen in military veterans and NFL football players. Currently CTE can be diagnosed only through an autopsy. The new study strongly suggests that a translational swine model for mapping functional brain connectivity is a promising approach to determine biomarkers or brain signatures that lead to CTE. Using this type of data, doctors would have the opportunity to diagnose CTE while a veteran or athlete is still alive.

By using resting-state functional magnetic resonance imaging (rs-fMRI), the researchers demonstrated functional connectivity in sensorimotor regions of the swine brain that parallels to that of the human brain. These regions include those where all our perceptions, feelings, movements and memories are encoded. The similarities of these functional networks, as published in the journal Brain Connectivity, set the stage for targeted clinical applications in the treatment and prevention of neurological disorders.

Franklin West, associate professor of animal and dairy science in College of Agricultural and Environmental Sciences, and his RBC collaborator, Qun Zhao, drew comparisons between sensory and cognitive relevance found in swine and those previously established in humans.

"Most of the models to-date deal with structural comparisons," said Zhao, associate professor of physics in the Franklin College of Arts and Sciences. "Our model goes beyond brain mass and allows us to address questions related to brain connectivity and memory function. Without a functional map of the brain it's hard to tell what parts of the brain are talking to each other."

Previous research has shown that shape and exact location of brain regions interact strongly with the modeling of brain connectivity. For years, researchers have posited that the shape and size of a swine brain bears physiological and anatomical similarities to the human brain, and therefore swine are considered a good animal model for neurological disease. However, according to the RBC team, scientists have not yet developed a unique model that captures functional connectivity or details the wiring diagram of the brain.

Neuroimaging typically helps researchers identify which regions of the brain activate when a person carries out a task; such as the simple task of starting a car. In order to turn on your car, you first have to look, then find, where to insert the key, as your brain takes visual cues and stimulates different parts of your arm to complete the action. Each part of your arm activates a different part of the brain in the act of inserting the key. If there's any interruption in the connections, those functions don't happen.

Those interrupted connections play a role in neurological disorders, such as Alzheimer's disease, Parkinson's disease, chronic traumatic encephalopathy (CTE) and autism. With any of these disorders, the RBC collaborators can now model a 360-degree view of which parts of the brain are no longer talking to each other and which centers in the brain are being reactivated and reconnected.

"What this new model allows and has never been done before," West said, "is for researchers to ask more refined questions about how the brain talks to itself, functions and coordinates action."

"What we tend to say is the brain is a black box and we don't know how it works," said West. "This study is a game changer. It gives us a light to shine inside the box."
-end-
In addition to those listed above, the study's co-authors include Gregory Simchick and Alice Shen, both from the MRI physics lab, led by Zhao.

The study, "Pig Brains Have Homologous Resting State Networks with Human Brains," is available online at https://www.liebertpub.com/doi/abs/10.1089/brain.2019.0673

University of Georgia

Related Brain Articles:

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.