Nav: Home

Artificial intelligence identifies 'kissing bugs' that spread Chagas disease

June 20, 2019

LAWRENCE -- New research from the University of Kansas shows machine learning is capable of identifying insects that spread the incurable disease called Chagas with high precision, based on ordinary digital photos. The idea is to give public health officials where Chagas is prevalent a new tool to stem the spread of the disease and eventually to offer identification services directly to the general public.

Chagas is particularly nasty because most people who have it don't know they've been infected. But according to the Centers for Disease Control and Prevention, some 20 percent to 30 percent of the 8 million people with Chagas worldwide are struck at some later point with heart rhythm abnormalities that can bring on sudden death; dilated hearts that don't pump blood efficiently; or a dilated esophagus or colon.

The disease is caused most often when triatomine bugs -- more commonly known as "kissing bugs" -- bite people and transmit the parasite Trypanosoma cruzi into their bloodstreams. Chagas is most prevalent in rural areas of Mexico, Central America and South America.

A recent undertaking at KU, called the Virtual Vector Project, sought to enable public health officials to identify triatomine that carry Chagas with their smartphones, using a kind of portable photo studio for taking pictures of the bugs.

Now, a graduate student at KU has built on that project with proof-of-concept research showing artificial intelligence can recognize 12 Mexican and 39 Brazilian species of kissing bugs with high accuracy by analyzing ordinary photos -- an advantage for officials looking to cut the spread of Chagas disease.

Ali Khalighifar, a KU doctoral student at the Biodiversity Institute and the Department of Ecology and Evolutionary Biology, headed a team that just published findings in the Journal of Medical Entomology. To identify the kissing bugs from regular photos, Khalighfar and his colleagues worked with open-source, deep-learning software from Google, called TensorFlow that is similar to the technology underpinning Google's reverse image search.

"Because this model is able to understand, based on pixel tones and colors, what is involved in one image, it can take out the information and analyze it in a way the model can understand -- and then you give them other images to test and it can identify them with a really good identification rate," Khalighifar said. "That's without preprocessing -- you just start with raw images, which is awesome. That was the goal. Previously, it was impossible to do the same thing as accurately and certainly not without preprocessing the images."

Khalighifar and his coauthors -- Ed Komp, researcher at KU's Information and Telecommunication Technology Center, Janine M. Ramsey of Mexico's Instituto Nacional de Salud Publica, Rodrigo Gurgel-Gonçalves of Brazil's Universidade de Brasília, and A. Townsend Peterson, KU Distinguished Professor of Ecology and Evolutionary Biology and senior curator with the KU Biodiversity Institute -- trained their algorithm with 405 images of Mexican triatomine species and 1,584 images of Brazilian triatomine species.

At first, the team was able to achieve, "83.0 and 86.7 percent correct identification rates across all Mexican and Brazilian species, respectively, an improvement over comparable rates from statistical classifiers," they write. But after adding information about kissing bugs' geographic distributions into the algorithm, the researchers boosted the accuracy of identification to 95.8 percent for Mexican species and 98.9 percent for Brazilian species.

According to Khalighifar, the algorithm-based technology could allow public health officials and others to identify triatomine species with an unprecedented level of accuracy, to better understand disease vectors on the ground.

"In the future, we're hoping to develop an application or a web platform of this model that is constantly trained based on the new images, so it's always being updated, that provides high-quality identifications to any interested user in real time," he said.

Khalighifar now is applying a similar approach using TensorFlow for instant identification of mosquitoes based on the sounds of their wings and frogs based on their calls.

"I'm working right now on mosquito recordings," he said. "I've shifted from image processing to signal processing of recordings of the wing beats of mosquitoes. We get the recordings of mosquitoes using an ordinary cell phone, and then we convert them from recordings to images of signals. Then we use TensorFlow to identify the mosquito species. The other project that I'm working right now is frogs, with Dr. Rafe Brown at the Biodiversity Institute. And we are designing the same system to identify those species based on the calls given by each species."

While often artificial intelligence is popularly portrayed as a job-killing threat or even an existential threat to humanity, Khalighifar said his research showed how AI could be a boon to scientists studying biodiversity.

"It's amazing -- AI really is capable of doing everything, for better or for worse," he said. "There are uses appearing that are scary, like identifying Muslim faces on the street. Imagine, if we can identify frogs or mosquitoes, how easy it might be to identify human voices. So, there are certainly dark sides of AI. But this study shows a positive AI application -- we're trying to use the good side of that technology to promote biodiversity conservation and support public health work."
-end-


University of Kansas

Related Mosquitoes Articles:

Mosquitoes are drawn to flowers as much as people -- and now scientists know why
Despite their reputation as blood-suckers, mosquitoes actually spent most of their time drinking nectar from flowers.
Mosquitoes engineered to repel dengue virus
An international team of scientists has synthetically engineered mosquitoes that halt the transmission of the dengue virus.
Engineered mosquitoes cannot be infected with or transmit any dengue virus
Genetically engineered mosquitoes are resistant to multiple types of dengue virus (DENV), according to a study published Jan.
Researchers identify that mosquitoes can sense toxins through their legs
Researchers at LSTM have identified a completely new mechanism by which mosquitoes that carry malaria are becoming resistant to insecticide.
Mated female mosquitoes are more likely to transmit malaria parasites
Female mosquitoes that have mated are more likely to transmit malaria parasites than virgin females, according to a study published Nov.
In Baltimore, lower income neighborhoods have bigger mosquitoes
Low-income urban neighborhoods not only have more mosquitoes, but they are larger-bodied, indicating that they could be more efficient at transmitting diseases.
Mosquitoes more likely to lay eggs in closely spaced habitats
Patches of standing water that are close together are more likely to be used by mosquitoes to lay eggs in than patches that are farther apart.
Why do mosquitoes choose us? Lindy McBride is on the case
Most of the 3,000+ mosquito species are opportunistic, but Princeton's Lindy McBride is most interested in the mosquitoes that scientists call 'disease vectors' -- carriers of diseases that plague humans -- some of which have evolved to bite humans almost exclusively.
Biting backfire: Some mosquitoes actually benefit from pesticide application
The common perception that pesticides reduce or eliminate target insect species may not always hold.
What makes mosquitoes avoid DEET? An answer in their legs
Many of us slather ourselves in DEET each summer in hopes of avoiding mosquito bites, and it generally works rather well.
More Mosquitoes News and Mosquitoes Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.