Nav: Home

New p53 gene discovery sheds light on how to make cancer therapies more effective

June 20, 2019

Scientists at VCU Massey Cancer Center have discovered that the loss of a protein called DBC1 in breast cancer cells leads to the dysregulation of normal anti-cancer functions, contributing to cancer cell growth and resistance to therapies. By restoring the expression of this protein, doctors may be able to help prevent the development of cancer and increase the effectiveness of common cancer treatments.

Recently published in the journal Cell Reports, the study used mass spectrometry to identify proteins that interact with processes that regulate the gene p53, which normally acts to suppress the development of cancer and has been found to be dysregulated in a majority of cancer types.

"We screened for proteins that interact with a protein within the nucleus of cells called CREB binding protein (CBP) that is known to regulate the gene p53. We found one of the proteins discovered in this screen called DBC1 is critical to maintaining the levels and activity of p53, and the gene encoding for this protein is frequently deleted in breast cancer cells," says the study's lead author Steven R. Grossman, M.D., Ph.D., deputy director of VCU Massey Cancer Center, Dianne Nunnally Hoppes Endowed Chair in Cancer Research and member of Massey's Cancer Molecular Genetics and Developmental Therapeutics research programs.

Previous research has shown that the CBP works with another protein known as MDM2 to maintain p53 levels in cells. This latest work from Dr. Grossman's laboratory shows that DBC1 regulates CBP activity, and therefore plays an essential role in maintaining p53 activity and abundance in normal cells.

"Restoring the function of DBC1 could potentially make tumors more susceptible to current cancer treatments and help prevent further cancer growth," says Grossman, who is also the chair of the Division of Hematology, Oncology and Palliative Care at the VCU School of Medicine.

The scientists used human breast cancer cell lines and mouse models to test their findings. They discovered that DBC1 levels decrease in response to cellular stress, which can be caused by platinum-based cancer drugs, for example. This drop in DBC1 decreased p53 levels, making the cells resistant to p53-mediated apoptosis, a form of controlled cell suicide. Many cancer drugs work by inducing apoptotic cell death.

Grossman and his team showed that maintaining DBC1 levels in cancer cells exposed to cisplatin, a platinum-based cancer drug, caused a substantially increased response to the drug.

"This shows that cancer cells have developed finely tuned responses to control DBC1 levels in order to avoid exaggerated apoptotic responses," says Grossman. "We're hopeful we can intervene in these processes and develop new strategies that increase the effectiveness of therapies for a variety of cancers shown to have dysregulated DBC1 levels, such as breast, lung and prostate cancers."
-end-
Grossman collaborated on this research with Lisa Litovchick, M.D., Ph.D., member of the Cancer Molecular Genetics research program at Massey and associate professor in the Department of Internal Medicine at the VCU School of Medicine; Barbara Szomju and Priyadarshan Damle, Ph.D., both from the Department of Internal Medicine at the VCU School of Medicine; Oluwatoyin Akande, Ph.D., postdoctoral fellow in the Department of Internal Medicine at the VCU School of Medicine; Marius Pop, Ph.D., from Kronos Bio, Inc.; and Nicholas Sherman, Ph.D., from the University of Virginia.

This research was supported by National Cancer Institute grant R01 CA107532 and, in part, by Massey Cancer Center's NIH/NCI Cancer Center Support Grant P30 CA016059.

Virginia Commonwealth University

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...