Nav: Home

First results from ruminant genome project will inform agriculture, conservation and biomedicine

June 20, 2019

A trio of Reports and a Perspective in this issue present the Ruminant Genome Project's (RGP) initial findings, which range from explaining how deer antlers exploit cancer-associated signaling pathways to regenerate, to informing reindeer genetic adaptations - including as relates to circadian rhythm - that have helped these animals thrive in the frigid Arctic. The work provides an unprecedented look into the genomics, evolution and adaptation of ruminants, a group of highly successful and diverse mammals with significant agricultural, conservational and biomedical importance, and one that includes many well-known domestic and wild taxa, such as cows, goats, reindeer and giraffes. Despite the fact that ruminant taxa can be found in most places on the planet, the evolutionary origin and diversification of ruminants as well as the genetics underlying their unique traits remain relatively unknown. To better resolve ruminant genetics, Lei Chen and colleagues assembled the genomes of 44 ruminant species across all six Ruminantia families - a dataset encompassing more than 40 trillion base pairs. Chen et al. then used these, as well as other ruminant genomes, to create a time-calibrated phylogenetic tree of the group, which was able to resolve the evolutionary history of many ruminant genera. Interestingly, the results revealed large declines in ruminant populations nearly 100,000 years ago, reductions that coincide with the migration of humans out of Africa and may be evidence of early humans' impact on various ruminant species, the authors say. In another Report, Yu Wang and colleagues examine the underlying genetics and evolution of ruminant headgear. Ruminants are the only living group of mammals that possess bony headgear, but despite their common composition and cranial location, their form and function is varied among several families. Antlers, like those carried by deer, are capable of rapid growth - as much as 2.5 centimeters a day - and have become a particular interest in regenerative biology. By comparing 221 transcriptomes from headgear-bearing ruminant families and the genomes of two lineages that convergently lack headgear against the genomic background provided by the RGP, Wang et al. found that the horns of bovids and the antlers of cervids share similar genetic and cellular roots. Most striking, however, is the discovery that the regenerative properties of antler tissue are made possible through the unique exploitation of cancer-associated signaling pathways and the high expression of tumor suppressing genes. Intriguingly, the genes and regulatory sequences expressed in these animals allow for tissue regeneration without cancer growth. Reindeer harbor a variety of biological adaptations that allow them to thrive in Arctic environments and survive harsh conditions such as extreme cold, limited food availability and prolonged periods of light and dark. What's more, reindeer are the only fully domesticated cervid species. However, the underlying genetic basis of their unique traits remains largely unknown. Here, Lin et al. closely evaluate the animal's genome and discover that several genes related to circadian arrhythmicity, vitamin D metabolism, docility and female antler growth, are either uniquely mutated and/or under positive selection in reindeer. While the results provide a genetic basis for reindeer Arctic adaptation and domestication, they may also provide insights relevant to human health, suggest the authors. For example, the newly identified genes related to circadian arrhythmicity could inform approaches to treat seasonal affective disorders, insomnia and depression. Finally, in a Perspective, Dai Fei Elmer Ker and Yunzhi Peter Yang discuss their potential implications of the three RGP Reports on future biomedical efforts.

American Association for the Advancement of Science

Related Genome Articles:

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.
Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.
A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.
Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.
Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.
A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.
How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.
Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.
Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.
Why do we need one pair of genome?
Scientists have unraveled how the cell replication process destabilizes when it has more, or less, than a pair of chromosome sets, each of which is called a genome -- a major step toward understanding chromosome instability in cancer cells.
More Genome News and Genome Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at