Nav: Home

How bacteria kill host cells from the inside

June 20, 2019

A bacterial pathogen that typically multiplies outside of host cells can enter and induce the destruction of cells called macrophages, according to a study published June 20 in the open-access journal PLOS Pathogens by Anne-Béatrice Blanc-Potard of the Université de Montpellier in France, and colleagues.

Pathogenic bacteria are commonly classified as intracellular or extracellular pathogens. Intracellular bacterial pathogens can replicate within host cells, including macrophages, which ingest and kill microorganisms in a process called phagocytosis. By contrast, extracellular pathogens such as Pseudomonas aeruginosa multiply outside of cells. However, recent data have shown that several extracellular pathogens can enter host cells. For example, P. aeruginosa has been reported to be engulfed by macrophages in animal models.

In the new study, Blanc-Potard and her colleagues visualized the fate of P. aeruginosa within macrophages. P. aeruginosa first resided in vesicles called phagosomes and subsequently could be detected in the cytoplasm, indicating that the pathogen had escaped degradation within the phagosomes. The intracellular bacteria could eventually induce cell lysis - the disintegration of a cell through membrane rupture. Two bacterial molecules, MgtC and OprF, recently identified to be important for the survival of P. aeruginosa in macrophages, were found to activate intracellular production of type III secretion system (T3SS), which in turn was found to be involved in bacterial escape from the phagosome as well as in cell lysis caused by the bacteria. According to the authors, the transient stage in which P. aeruginosa resides inside of macrophages could contribute to bacterial dissemination during infection.

The authors add, "While the role of macrophages is to ingest and kill microorganisms, the pathogenic bacterium Pseudomonas aeruginosa can induce cell lysis when it insides inside macrophages. The weapons used by internalized bacteria to lyse the macrophage are decrypted."
-end-
Research Article

Funding: This work is supported by Vaincre La Mucoviscidose (http://www.vaincrelamuco.org/) (RF20150501356/1/1/47 and RIF20170502042) and Association Gregory Lemarchal (https://association-gregorylemarchal.org/). PG is supported by the Association Méditerranée Infection (http://www.mediterranee-infection.com/). MM is supported by Vaincre La Mucoviscidose (RIF20170502042). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Citation: Garai P, Berry L, Moussouni M, Bleves S, Blanc-Potard A-B (2019) Killing from the inside: Intracellular role of T3SS in the fate of Pseudomonas aeruginosa within macrophages revealed by mgtC and oprF mutants. PLoS Pathog 15(6): e1007812. https://doi.org/10.1371/journal.ppat.1007812

Author Affiliations:

Université de Montpellier
CNRS & Aix-Marseille Univ

In your coverage please use this URL to provide access to the freely available paper: http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1007812

PLOS

Related Bacteria Articles:

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.