Nav: Home

National emergency alerts potentially vulnerable to attack

June 20, 2019

On October 3, 2018, cell phones across the United States received a text message labeled "Presidential Alert." The message read: "THIS IS A TEST of the National Wireless Emergency Alert System. No action is needed."

It was the first trial run for a new national alert system, developed by several U.S. government agencies as a way to warn as many people across the United States as possible if a disaster was imminent.

Now, a new study by researchers at the University of Colorado Boulder raises a red flag around these alerts--namely, that such emergency alerts authorized by the President of the United States can, theoretically, be spoofed.

The team, including faculty from CU Engineering's Department of Computer Science (CS), Department of Electrical, Computer and Energy Engineering (ECEE) and the Technology, Cybersecurity and Policy (TCP) program discovered a back door through which hackers might mimic those alerts, blasting fake messages to people in a confined area, such as a sports arena or a dense city block.

The researchers, who have already reported their results to U.S. government officials, say that the goal of their study is to work with relevant authorities to prevent such an attack in the future.

"We think this is something the public should be aware of to encourage cell carriers and standards bodies to correct this problem," said Eric Wustrow, a co-author of the study and an assistant professor in ECEE. "In the meantime, people should probably still trust the emergency alerts they see on their phones."

The researchers reported their results at the 2019 International Conference on Mobile Systems, Applications and Services (MobiSys) in Seoul, South Korea, where their study won the award for "best paper."

Wustrow said that he and colleagues Sangtae Ha and Dirk Grunwald decided to pursue the project, in part, because of a real-life event.

In January 2018, months before the first presidential alert test went out, millions of Hawaiians received a similar, but seemingly genuine, message on their phones: someone had launched a ballistic missile attack on the state.

It was, of course, a mistake, but that event made the CU Boulder team wonder: How secure are such emergency alerts?

The answer, at least for presidentially-authorized alerts, hinges on where you look.

"Sending the emergency alert from the government to the cell towers is reasonably secure," said co-author Sangtae Ha, an assistant professor in the Department of Computer Science. "But there are huge vulnerabilities between the cell tower and the users."

Ha explained that because the government wants presidential alerts to reach as many cell phones as possible, it takes a broad approach to broadcasting these alerts--sending messages through a distinct channel to every device in range of a cell tower.

He and his colleagues discovered that hackers could exploit that loophole by creating their own, black market cell towers. First, the team, working in a secured lab, developed software that could mimic the format of a presidential alert.

"We only need to broadcast that message into the right channel, and the smartphone will pick it up and display it," Ha said.

And, he said, the team found that such messages could be sent out using commercially-available wireless transmitters with a high success rate--or roughly hitting 90 percent of phones in an area the size of CU Boulder's Folsom Field, potentially sending malicious warnings to tens of thousands of people.

It's a potentially major threat to public safety, said Grunwald, a professor in computer science.

"We think it is concerning, which is why we went through a responsible disclosure process with different government agencies and carriers," he said.

The team has already come up with a few ways to thwart such an attack and are working with partners in industry and government to determine which mechanisms are most effective.
-end-
Other co-authors on the new study include CU Boulder graduate students and researchers Gyuhong Lee, Jihoon Lee, Jinsung Lee, Youngbin Im and Max Hollingsworth.

University of Colorado at Boulder

Related Cell Phones Articles:

New lithium batteries from used cell phones
Research from the University of Cordoba (Spain) and San Luis University (Argentina) was able to reuse graphite from cell phones to manufacture environmentally friendly batteries.
Thyroid cancer, genetic variations, cell phones linked in YSPH study
Radiation from cell phones is associated with higher rates of thyroid cancer among people with genetic variations in specific genes, a new study led by the Yale School of Public Health finds.
Dissemination of pathogenic bacteria by university student's cell phones
New research has demonstrated the presence of S. aureus in 40% of the cell phones of students sampled at a university.
'Technoference': We're more tired & less productive because of our phones
An Australian survey of 709 mobile phone users (aged 18 to 83), led by Queensland University of Technology, has found one in five women and one in eight men are losing sleep due to bad phone habits.
Research could lead to more durable cell phones and power lines
Researchers from Binghamton University, State University of New York have developed a way to make cell phones and power lines more durable. 
Cell phones without annual plans offer limited help to homeless people
The vast majority of older homeless adults have access to mobile phones, but they are usually basic phones, without annual contracts that let them keep stable numbers, and thus are only practical for one-way communication, according to a UC San Francisco study of how homeless people use mobile and Internet technology.
Laws designed to ban or curb drivers' use of cell phones are saving motorcyclists' lives
Laws to ban or curb drivers' use of cell phones and other handheld devices have greatly reduced the rate of fatalities for motorcyclists, according to a new study from Florida Atlantic University and the University of Miami.
Toxic chemicals calling: Cell phones as a source of flame retardants
New research by environmental scientists at the University of Toronto suggests that the exterior of mobile phones could be a source of toxic chemicals, or at least an aggregate indicator of the chemicals to which people are exposed on a daily basis.
About half of parents use cell phones while driving with young children in the car
A new study from a team of researchers at Children's Hospital of Philadelphia and the University of Pennsylvania School of Nursing found that in the previous three months, about half of parents talked on a cell phone while driving when their children between the ages of 4 and 10 were in the car, while one in three read text messages and one in seven used social media.
Ultrasound-firewall for mobile phones
Mobile phones and tablets through so-called audio tracking, can be used by means of ultrasound to unnoticeably track the behaviour of their users: for example, viewing certain videos or staying in specific rooms and places.
More Cell Phones News and Cell Phones Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.