Nav: Home

Study: Phenols in cocoa bean shells may reverse obesity-related problems in mouse cells

June 20, 2019

CHAMPAIGN, Ill. -- Scientists may have discovered more reasons to love chocolate.

A new study by researchers at the University of Illinois suggests that three of the phenolic compounds in cocoa bean shells have powerful effects on the fat and immune cells in mice, potentially reversing the chronic inflammation and insulin resistance associated with obesity.

Visiting scholar in food science Miguel Rebollo-Hernanz and Elvira Gonzalez de Mejia, a professor in the department, found that cocoa shells contain high levels of three beneficial bioactive chemicals also found in cocoa, coffee and green tea - protocatechuic acid, epicatechin and procyanidin B2.

Rebollo-Hernanz, the study's lead author, created a water-based extract containing these compounds and tested its effects on white fat cells called adipocytes and immune cells called macrophages. Using computer modeling and bioinformatic techniques, he also examined the impact that each of the phenolics individually had on the cells.

"The objectives of the study were to test whether the bioactive compounds in the cocoa shells were efficacious against macrophages - the inflammatory cells - at eliminating or reducing the biomarkers of inflammation," said de Mejia, also a director of nutritional sciences. "We wanted to see if the phenolics in the extract blocked or reduced the damage to fat cells' mitochondria and prevented insulin resistance."

Similar to batteries within cells that burn fat and glucose to generate energy, mitochondria can become damaged when high levels of fat, glucose and inflammation occur in the body, de Mejia said.

When the scientists treated adipocytes with the aqueous extract or the three phenolic compounds individually, damaged mitochondria in the cells were repaired and less fat accumulated in the adipocytes, blocking inflammation and restoring the cells' insulin sensitivity, Rebollo-Hernanz said.

The scientists reported their findings recently in a paper published in the journal Molecular Nutrition and Food Research.

When adipocytes accumulate too much fat, they promote the growth of macrophages. This initiates a toxic cycle in which the adipocytes and macrophages interact, emitting toxins that inflame fat tissue, de Mejia said.

Over time, this chronic inflammation impairs cells' ability to take up glucose, leading to insulin resistance and possibly type 2 diabetes as glucose levels in the blood escalate.

To recreate the inflammatory process that occurs in the body when macrophages and adipocytes begin their toxic dance, Rebollo-Hernanz grew adipocytes in a solution in which macrophages had been cultured.

"That's when we observed that these inflammatory conditions in the solution increased the oxidative damage" to the fat cells' mitochondria, he said.

Fewer mitochondria were present in the adipocytes that were grown in the solution, and the mitochondria that did exist in these cells were damaged, he found.

When the scientists treated the adipocytes with the phenolics in the extract, however, the adipocytes underwent a process called browning, in which they differentiated - that is, converted - from white adipocytes into another form called beige adipocytes.

Beige adipocytes are a specialized form of fat tissue with greater numbers of mitochondria and enhanced fat-burning efficiency.

"We observed that the extract was able to maintain the mitochondria and their function, modulating the inflammatory process and maintaining the adipocytes' sensitivity to insulin," Rebollo-Hernanz said. "Assuming that these phenolics were the main actors in this extract, we can say that consuming them could prevent mitochondrial dysfunction in adipose tissue."

Cocoa shells are a waste byproduct that's generated when cocoa beans are roasted during chocolate production. About 700,000 tons of the shells are discarded annually, causing environmental contamination if not disposed of responsibly, de Mejia said.

In addition to providing cocoa producers with another potential revenue stream, processing the shells to extract the nutrients would reduce the environmental toxicants generated currently by cocoa shell waste, de Mejia said.

Once extracted from cocoa bean shells, the phenolic compounds could be added to foods or beverages to boost products' nutritional value, she said.
-end-
Co-authors on the paper were Yolanda Aguilera and Maria A. Martin-Cabrejas, both faculty members at Spain's Universidad Autonoma de Madrid; and then-doctoral student Qiaozhi Zhang at the U. of I.

The study was funded by the Universidad Autonoma de Madrid-Banco Santander, the U.S. Department of Agriculture-National Institute of Food and Agriculture-HATCH, and the Spanish Ministry of Science and Innovation.

University of Illinois at Urbana-Champaign, News Bureau

Related Mitochondria Articles:

A ribosome odyssey in mitochondria
The ciliate mitoribosome structure provides new insights into the diversity of translation and its evolution.
Fireflies shed light on the function of mitochondria
By making mice bioluminescent, EPFL scientists have found a way to monitor the activity of mitochondria in living organisms.
First successful delivery of mitochondria to liver cells in animals
This experiment marks the first time researchers have ever successfully introduced mitochondria into specific cells in living animals.
Lack of mitochondria causes severe disease in children
Researchers at Karolinska Institutet in Sweden have discovered that excessive degradation of the power plants of our cells plays an important role in the onset of mitochondrial disease in children.
Unexpected insights into the dynamic structure of mitochondria
As power plants and energy stores, mitochondria are essential components of almost all cells in plants, fungi and animals.
Mitochondria are the 'canary in the coal mine' for cellular stress
Mitochondria, tiny structures present in most cells, are known for their energy-generating machinery.
Master regulator in mitochondria is critical for muscle function and repair
New study identifies how loss of mitochondrial protein MICU1 disrupts calcium balance and causes muscle atrophy and weakness.
Oxygen deficiency rewires mitochondria
Researchers slow the growth of pancreatic tumor cells.
Self-cannibalizing mitochondria may set the stage for ALS development
Northwestern Medicine scientists have discovered a new phenomenon in the brain that could explain the development of early stages of neurodegeneration that is seen in diseases such as ALS, which affects voluntary muscle movement such as walking and talking.  The discovery was so novel, the scientists needed to coin a new term to describe it: mitoautophagy, a collection of self-destructive mitochondria in diseased upper motor neurons of the brain that begin to disintegrate from within at a very early age.
Uncovering the presynaptic distribution and profile of mitochondria
In a recent study published in the Journal of Neuroscience, scientists from the MPFI and the University of Iowa CCOM have provided unprecedented insight into the presynaptic distribution and profile of mitochondria in the developing and mature calyx of Held.
More Mitochondria News and Mitochondria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.