Nav: Home

Brains of pairs of animals synchronize during social interaction

June 20, 2019

FINDINGS

UCLA researchers have published a Cell study showing that the brains of pairs of animals synchronize during social situations. The synchronized activity not only arose during various types of social behavior, but also the level of synchronization actually predicted how much the animals would interact. The team also found that brain synchrony arises from different subsets of neurons that encode the behavior of the self vs. the social partner, and that the dominant animal's behavior tends to drive synchronization more than behavior of the subordinate.

BACKGROUND

Considerable research has been devoted to studying brain activity in individual animals behaving alone. Much of animals' lives are spent interacting with one another -- socializing, competing and so forth -- and these social behaviors are generally quite complex, as an animal must not only react to other individuals, but actively predict their future behavior. Less is understood about how brain activity might function across interacting animals. Using sophisticated recording devices, the research team set out to simultaneously monitor activity in the brains of two interacting mice, making this the first study to use the technique in two animals behaving naturally together.

METHOD

The researchers attached tiny, high-tech microscopes to the heads of each mouse, which recorded activity in hundreds of individual brain cells. Fitted with the devices, the mice were placed together in pairs, first in open arenas to freely interact, and later in plastic tubes -- a common method of observing competition and social hierarchy, as the dominant mouse tends to claim more of the tube's "territory" by pushing against the subordinate mouse, or pushing it out of the tube completely.

When the mice interacted with each other, their brain activity was correlated, or synced up. The more engaged they were with one another, the more coupled were their brains. This brain synchronization arose from individual cells -- interestingly, some cells responded preferentially to the behavior of the self, while other cells responded only to the behavior of the social partner. The dominant mouse's behavior tended to have more of an effect on synchronization than that of the subordinate mouse, likely because both animals in a pair are paying attention to the dominant animal.

IMPACT

This is the first time that interbrain synchrony has been observed in socializing mice. Researchers believe that the insights gained from this study may shed new light on how brain activity synchronizes across humans during social interaction. Beyond adding clarity to fundamental properties of brain function in social interaction, the findings may also enable researchers to understand more about certain psychiatric and developmental disorders, including autism spectrum disorder, since many of these conditions include symptoms such as social deficits.
-end-
AUTHORS

The study's senior author is Weizhe Hong, a professor of biological chemistry and neurology at the David Geffen School of Medicine at UCLA. Other authors of the paper are Lyle Kingsbury, Shan Huang, Jun Wang, Ken Gu, Peyman Golshani and Ye Emily Wu, all of UCLA.

FUNDING

The study was supported by grants from the National Institutes of Health and the National Science Foundation, an ARCS Fellowship, a Marion Bowen Postdoctoral Grant, a Whitehall Foundation grant, a NARSAD Young Investigator grant, a Sloan Research Fellowship, a Searle Scholars Award, a Klingenstein-Simons Fellowship, a Brain Research Foundation grant, and a Packard Foundation Fellowship.

University of California - Los Angeles Health Sciences

Related Brain Activity Articles:

More brain activity is not always better when it comes to memory and attention
Potential new ways of understanding the cause of cognitive impairments, such as problems with memory and attention, in brain disorders including schizophrenia and Alzheimer's are under the spotlight in a new research review.
Researchers to predict cognitive dissonance according to brain activity
A new study by HSE researchers has uncovered a new brain mechanism that generates cognitive dissonance -- a mental discomfort experienced by a person who simultaneously holds two or more contradictory beliefs or values, or experiences difficulties in making decisions.
Brain activity can be used to predict reading success up to 2 years in advance
By measuring brainwaves, it is possible to predict what a child's reading level will be years in advance, according to research from Binghamton University, State University of New York.
There's a close association between magnetic systems and certain states of brain activity
Scientists from the University of Granada (UGR) have proven for the first time that there is a close relationship between several emerging phenomena in magnetic systems (greatly studied by condensed matter physicists) and certain states of brain activity.
Hormone can enhance brain activity associated with love and sex
The hormone kisspeptin can enhance activity in brain regions associated with sexual arousal and romantic love, according to new research.
Manipulating brain activity to boost confidence
Is it possible to directly boost one's own confidence by directly training the brain?
Brain activity may predict risk of falls in older people
Measuring the brain activity of healthy, older adults while they walk and talk at the same time may help predict their risk of falls later, according to a study published in the Dec.
Neuro chip records brain cell activity
In order to understand how the brain controls functions, such as simple reflexes or learning and memory, we must be able to record the activity of large networks and groups of neurons.
Too much activity in certain areas of the brain is bad for memory and attention
Researchers led by Dr Tobias Bast in the School of Psychology at The University of Nottingham have found that faulty inhibitory neurotransmission and abnormally increased activity in the hippocampus impairs our memory and attention.
Brain changes after menopause may lead to lack of physical activity
Researchers from the University of Missouri have found a connection between lack of ovarian hormones and changes in the brain's pleasure center, a hotspot in the brain that processes and reinforces messages related to reward, pleasure, activity and motivation for physical exercise.

Related Brain Activity Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".