Nav: Home

Liquid cooling with microfluidic channels helps computer processors beat the heat

June 21, 2005

A new technique for fabricating liquid cooling channels onto the backs of high-performance integrated circuits could allow denser packaging of chips while providing better temperature control and improved reliability.

Developed at the Georgia Institute of Technology, the wafer-level fabrication technique includes polymer pipes that will allow electronic and cooling interconnections to be made simultaneously using automated manufacturing processes. The low-temperature technique, which is compatible with conventional microelectronics manufacturing processing, allows fabrication of the microfluidic cooling channels without damage to integrated circuits.

The on-chip microfluidic technique was described June 7th at the eighth annual IEEE International Interconnect Conference in San Francisco, CA. The research was sponsored by the Microelectronics Advanced Research Corporation (MARCO) and the Defense Advanced Research Projects Agency (DARPA).

"This scheme offers a simple and compact solution to transfer cooling liquid directly into a gigascale integrated (GSI) chip, and is fully compatible with conventional flip-chip packaging," said Bing Dang, a Graduate Research Assistant in Georgia Tech's School of Electrical and Computer Engineering. "By integrating the cooling microchannels directly into the chip, we can eliminate a lot of the thermal interface issues that are of great concern."

As the power density of high-performance integrated circuits increases, cooling the devices has become a more significant concern. Conventional cooling techniques, which depend on heat sinks on the backs of ICs to transfer heat into streams of forced air, will be unable to meet the needs of future power-hungry devices - especially 3D multi-chip modules that will pack more processing power into less space.

High temperatures can cause early failure of the devices due to electromigration. By controlling average operating temperature and cooling hot-spots, liquid cooling can enhance reliability of the integrated circuits, Dang noted. Lower operating temperatures also mean a smaller thermal-excursion between silicon and low-cost organic package substrates that expand at different rates.

Some liquid cooling techniques are already in production or at a research stage, circulating liquid through separate cooling modules attached to the integrated circuits, or through microchannels fabricated onto the back of chips using high-temperature bonding techniques. These approaches have disadvantages, including limited heat transfer through the modules and potential thermal damage to the chips caused by bonding temperatures that range from 400 to 700 degrees Celsius.

The Georgia Tech approach allows a simple monolithic fabrication of cooling channels directly onto integrated circuits using a CMOS-compatible technique at temperatures of less than 260 degrees Celsius.

"Once the integrated circuit is fabricated, it cannot withstand high temperatures without causing damage," said Dang. "People are looking at liquid cooling in all forms to solve the thermal issues affecting advanced integrated circuits, and the goal is to prevent damage to the chips. We have invented a new way to do it."

The Georgia Tech researchers, who include Paul Joseph, Muhannad Bakir, Todd Spencer, Paul Kohl and James Meindl, begin by etching trenches more than 100 microns deep on the back of the silicon wafer. They then spin-coat a layer of high-viscosity sacrificial polymer onto the back of the chip, filling in the trenches. Next, a simple polishing step removes excess polymer.

The filled trenches are then covered by a porous overcoat, and the chip is gradually heated in a nitrogen environment. The heating causes the sacrificial polymer filling the trenches to decompose and leave the channels through the porous overcoat, leaving microfluidic channels behind. The porous overcoat is then covered with another polymer layer to make a watertight system.

In addition to the cooling channels, the researchers have also built through-chip holes and polymer pipes that would allow the on-chip cooling system to be connected to embedded fluidic channels built into a printed wiring board. They have already demonstrated that the on-chip microfluidic channels can be connected at the same time the IC is connected electronically - using a conventional automated process known as flip-chip bonding.

The system would use buffered de-ionized water as its coolant. Self-contained cooling systems would circulate coolant using a centimeter-size micro-pump, while more complex equipment could use a centralized circulation system. The researchers have so far demonstrated that their microchannels can withstand pressure of more than 35 pounds per square inch - the equivalent to the air pressure used in passenger-car tires.

Calculations show that the system, which can have either straight-line or serpentine microchannel configurations, should be able to cool 100 watts per square-centimeter. Heat removal capacity depends on the flow rate of the coolant and its pressure, with smaller diameter microchannels more efficient at heat transfer.

Dang expects the technology to be used first in high-performance specialty processors that can justify the cost of the cooling system. So far, the researchers have demonstrated continuous liquid flow on a chip for several hours without failure, but additional testing is still needed to confirm long-term reliability, he added.

By eliminating the large heat sinks and heat spreaders, along with high-aspect ratio fins, the technology could allow denser packaging of integrated circuits, making 3D packaging feasible.

"The challenge of 3D integration now is that if you have several chips stacked on one another, there is no way to cool the chips in between," Dang said. "If we have microchannels on the back side of each chip, we could pump liquid through them and cool all of the chips."
-end-


Georgia Institute of Technology Research News

Related Integrated Circuits Articles:

Seeing the invisible with a graphene-CMOS integrated device
Flagship researchers integrate graphene and quantum dots with CMOS technology to create an array of photodetectors, producing a high resolution image sensor.
Stopping the brain's memory circuits from overheating
In the absence of CA2 activity, mice experience epilepsy-like activity, a sign that this area is essential for regulating the balance of excitation and inhibition in the brain.
Human forebrain circuits under construction -- in a dish
Neuroscientists have created a 3-D window into the human brain's budding executive hub assembling itself during a critical period in prenatal development.
Computing with biochemical circuits made easy
A software tool and a systematic wet-lab procedure proven in practice are an advance in the design and construction of circuits made of DNA.
Nano-chimneys can cool circuits
Rice University researchers show that tweaking graphene to place cones between it and nanotubes grown from its surface would form 'nano-chimneys' that help heat escape.
Integrated neighborhoods more common across the US, study finds
In all parts of the United States, the number of neighborhoods that sustain a mix of black, white, Asian and Hispanic residents over time is growing quickly, a new study finds.
3-D-printed organ-on-a-chip with integrated sensors
Researchers have made the first entirely 3-D-printed organ-on-a-chip with integrated sensing.
Ultra-flat circuits will have unique properties
Theoretical physicists at Rice University analyzed the electronic consequences of creating circuits in two dimensions by simulating the juxtaposition of different atom-thick materials like graphene and hexagonal boron nitride.
New, better way to build circuits for world's first useful quantum computers
The era of quantum computers is one step closer as a result described of research described in the current issue of the journal Science.
An integrated inertial microfluidic vortex sorter
A novel microfluidic device enables automatic double extraction and purification of target cells, serving as a powerful tool for cellular sample preparation in biomedical research and clinical diagnostics.

Related Integrated Circuits Reading:

Analysis And Design Of Analog Integrated Circuits, 5Th Ed, Isv
by Meyer,Hurst,Gray, Lewis (Author)

The fifth edition retains its completeness, updates the coverage of bipolar technologies, and enhances the discussion of bicmos. It provides a more unified treatment of digital and analog circuit design while strengthening the coverage of cmos. The chapter on non-linear analog circuits has been removed and chapter 11 has been updated to include an operational amplifier example. Models for integrated-circuit active devices bipolar, mos, and bicmos integrated-circuit technology single-transistor and multiple-transistor amplifiers current mirrors, active loads, and references output stages... View Details


Design of Analog CMOS Integrated Circuits (Irwin Electronics & Computer Enginering)
by Behzad Razavi (Author)

Design of Analog CMOS Integrated Circuits by Behzad Razavi, deals with the analysis and design of analog CMOS integrated circuits, emphasizing fundamentals, as well as new paradigms that students and practicing engineers need to master in today's industry. Because analog design requires both intuition and rigor, each concept is first introduced from an intuitive perspective and subsequently treated by careful analysis. The objective is to develop both a solid foundation and methods of analyzing circuits by inspection so that the reader learns what approximations can be made in which... View Details


Digital Integrated Circuits (2nd Edition)
by Jan M. Rabaey (Author), Anantha Chandrakasan (Author), Borivoje Nikolic (Author)

Progressive in content and form, this practical book successfully bridges the gap between the circuit perspective and system perspective of digital integrated circuit design. Digital Integrated Circuits maintains a consistent, logical flow of subject matter throughout. Addresses today's most significant and compelling industry topics, including: the impact of interconnect, design for low power, issues in timing and clocking, design methodologies, and the tremendous effect of design automation on the digital design perspective. For readers interested in... View Details


Diode Lasers and Photonic Integrated Circuits
by Larry A. Coldren (Author), Scott W. Corzine (Author), Milan L. Mashanovitch (Author)

Diode Lasers and Photonic Integrated Circuits, Second Edition provides a comprehensive treatment of optical communication technology, its principles and theory, treating students as well as experienced engineers to an in-depth exploration of this field. Diode lasers are still of significant importance in the areas of optical communication, storage, and sensing. Using the the same well received theoretical foundations of the first edition, the Second Edition now introduces timely updates in the technology and in focus of the book. After 15 years of development in the field, this book... View Details


Analog Integrated Circuit Design
by Tony Chan Carusone (Author), David Johns (Author), Kenneth Martin (Author)

The 2nd Edition of Analog Integrated Circuit Design focuses on more coverage about several types of circuits that have increased in importance in the past decade. Furthermore, the text is enhanced with material on CMOS IC device modeling, updated processing layout and expanded coverage to reflect technical innovations. CMOS devices and circuits have more influence in this edition as well as a reduced amount of text on BiCMOS and bipolar information. New chapters include topics on frequency response of analog ICs and basic theory of feedback amplifiers.  

View Details


The Design of CMOS Radio-Frequency Integrated Circuits, Second Edition
by Thomas H. Lee (Author)

This expanded and thoroughly revised edition of Thomas H. Lee's acclaimed guide to the design of gigahertz RF integrated circuits features a completely new chapter on the principles of wireless systems. The chapters on low-noise amplifiers, oscillators and phase noise have been significantly expanded as well. The chapter on architectures now contains several examples of complete chip designs that bring together all the various theoretical and practical elements involved in producing a prototype chip. First Edition Hb (1998): 0-521-63061-4 First Edition Pb (1998); 0-521-63922-0 View Details


Digital Integrated Circuits: A Design Perspective
by Jan M. Rabaey (Author)

Intended for use in an undergraduate senior-level digital circuit design class. Advanced material appropriate for graduate courses.Progressive in content and form, this practical text successfully bridges the gap between the circuit perspective and system perspective of digital integrated circuit design. Beginning with solid discussions on the operation of electronic devices and and in-depth analysis of the nucleus of digital design, the text maintains a consistent, logical flow of subject matter throughout, addressing today's most significant and compelling industry topics: the impact of... View Details


Digital Integrated Circuits: A Design Perspective
by Jan M Rabaey (Author)

* Book: DIGITAL INTEGRATED CIRCUITS : A DESIGN PERSPECTIVE * Author:BHABATOSH CHANDA * ISBN:8120322576 * ISBN-13:9788120322578, 978-8120322578 * Binding: Paperback * Publishing Date: * Publisher: PHI Learning * Number of Pages: 792 pages * Language: English View Details


Analysis and Design of Analog Integrated Circuits (4th Edition)
by Paul R. Gray (Author), Paul J. Hurst (Author), Stephen H. Lewis (Author), Robert G. Meyer (Author)

The fourth edition features coverage of cutting edge topics--more advanced CMOS device electronics to include short-channel effects, weak inversion and impact ionization. In this resourceful book find: * Coverage of state-of-the-art IC processes shows how modern integrated circuits are fabricated, including recent issues like heterojunction bipolar transistors, copper interconnect and low permittivity dielectric materials * Comprehensive and unified treatment of bipolar and CMOS circuits helps readers design real-world amplifiers in silicon. View Details


CMOS Digital Integrated Circuits Analysis & Design
by Sung-Mo (Steve) Kang Professor of Electrical and Computer Engineering (Author), Yusuf Leblebici Professor of Electrical Engineering (Author), Chul Woo Kim Associate Professor (Author)

CMOS Digital Integrated Circuits: Analysis and Design continues the well-established tradition of the earlier editions by offering the most comprehensive coverage of digital CMOS circuit design, as well as addressing state-of-the-art technology issues highlighted by the widespread use of nanometer-scale CMOS technologies. In this latest edition, virtually, all chapters have been rewritten - the transistor model equations and device parameters have been revised to reflect the sigificant changes that must be taken into account for new technology generations, and the material has been... View Details

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Manipulation
We think we're the ones who control what we see, read, think and remember. But is that true? Who decides? And who should decide? This hour, TED speakers reveal just how easily we can be manipulated. Guests include design ethicist Tristan Harris, MSNBC host Ali Velshi, psychologist Elizabeth Loftus, and neuroscientist Steve Ramirez.
Now Playing: Science for the People

#443 Batteries
This week on Science for the People we take a deep dive into modern batteries: how they work now and how they might work in the future. We speak with Gerbrand Ceder from UC Berkeley, about the most commonly used batteries today, how they work, and how they could work better. And we talk with Kathryn Toghill, electrochemist from Lancaster University, about redox flow batteries and how they could help make our power grids more sustainable.