Nav: Home

Researchers create self-assembling nanodevices that move and change shape on demand

June 21, 2010

BOSTON, Mass. (June 20, 2010) - By emulating nature's design principles, a team at Harvard's Wyss Institute for Biologically Inspired Engineering, Harvard Medical School and Dana-Farber Cancer Institute has created nanodevices made of DNA that self-assemble and can be programmed to move and change shape on demand. In contrast to existing nanotechnologies, these programmable nanodevices are highly suitable for medical applications because DNA is both biocompatible and biodegradable.

The work appears in the June 20 advance online Nature Nanotechnology.

Built at the scale of one billionth of a meter, each device is made of a circular, single-stranded DNA molecule that, once it has been mixed together with many short pieces of complementary DNA, self-assembles into a predetermined 3D structure. Double helices fold up into larger, rigid linear struts that connect by intervening single-stranded DNA. These single strands of DNA pull the struts up into a 3D form--much like tethers pull tent poles up to form a tent. The structure's strength and stability result from the way it distributes and balances the counteracting forces of tension and compression.

This architectural principle--known as tensegrity--has been the focus of artists and architects for many years, but it also exists throughout nature. In the human body, for example, bones serve as compression struts, with muscles, tendons and ligaments acting as tension bearers that enable us to stand up against gravity. The same principle governs how cells control their shape at the microscale.

"This new self-assembly based nanofabrication technology could lead to nanoscale medical devices and drug delivery systems, such as virus mimics that introduce drugs directly into diseased cells," said co-investigator and Wyss Institute director Don Ingber. A nanodevice that can spring open in response to a chemical or mechanical signal could ensure that drugs not only arrive at the intended target but are also released when and where desired.

Further, nanoscopic tensegrity devices could one day reprogram human stem cells to regenerate injured organs. Stem cells respond differently depending on the forces around them. For instance, a stiff extracellular matrix--the biological glue surrounding cells--fabricated to mimic the consistency of bone signals stem cells to become bone, while a soupy matrix closer to the consistency of brain tissue signals the growth of neurons. Tensegrity nanodevices "might help us to tune and change the stiffness of extracellular matrices in tissue engineering someday," said first author Tim Liedl, who is now a professor at Ludwig-Maximilians-Universität in Munich.

"These little Swiss Army knives can help us make all kinds of things that could be useful for advanced drug delivery and regenerative medicine," said lead investigator William Shih, Wyss core faculty member and associate professor of biological chemistry and molecular pharmacology at HMS and Dana-Farber Cancer Institute. "We also have a handy biological DNA Xerox machine that nature evolved for us," making these devices easy to manufacture.

This new capability "is a welcome element in the structural DNA nanotechnology toolbox," said Ned Seeman, professor of chemistry at New York University.
-end-
This research was funded by the Wyss Institute for Biologically Inspired Engineering at Harvard University, National Institutes of Health, Deutscher Akademischer Austauschdienst Fellowship, Swedish Science Council Fellowship and Claudia Adams Barr Program Investigator award.

Written by Elizabeth Dougherty

Citation:

Nature Nanotechnology, online publication, June 20, 2010
"Self-assembly of 3D prestressed tensegrity structures from DNA"
Tim Liedl, Bjorn Hogberg, Jessica Tytell, Donald E. Ingber, William M. Shih

The Wyss Institute for Biologically Inspired Engineering at Harvard University (http://wyss.harvard.edu) uses nature's design principles to create breakthrough technologies that will revolutionize medicine, industry and the environment. Working as an alliance among Harvard's Medical School, School of Engineering and Applied Sciences, and Faculty of Arts and Sciences, and in partnership with Beth Israel Deaconess Medical Center, Children's Hospital Boston, Dana-Farber Cancer Institute, University of Massachusetts Medical School and Boston University, the Institute crosses disciplinary and institutional barriers to engage in high-risk, fundamental research that leads to transformative change. By applying biological principles, Wyss researchers are developing innovative new engineering solutions for healthcare, manufacturing, robotics, energy and sustainable architecture. These technologies are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances and new startups.

Harvard Medical School (http://hms.harvard.edu) has more than 7,500 full-time faculty working in 11 academic departments located at the School's Boston campus or in one of 47 hospital-based clinical departments at 17 Harvard-affiliated teaching hospitals and research institutes. Those affiliates include Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Cambridge Health Alliance, Children's Hospital Boston, Dana-Farber Cancer Institute, Forsyth Institute, Harvard Pilgrim Health Care, Hebrew SeniorLife, Joslin Diabetes Center, Judge Baker Children's Center, Massachusetts Eye and Ear Infirmary, Massachusetts General Hospital, McLean Hospital, Mount Auburn Hospital, Schepens Eye Research Institute, Spaulding Rehabilitation Hospital and VA Boston Healthcare System.

Harvard Medical School

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...