A possible role for Smurf1 in pulmonary arterial hypertension

June 21, 2010

Pulmonary arterial hypertension (PAH) is a progressive disease, marked by shortness of breath and fatigue which can be fatal if untreated. Increased pressure in the pulmonary artery and its branches is associated with dysfunctional growth control of endothelial and smooth muscle cells leading to excessive thickening of the blood vessel wall, obliteration of the lumen and right heart failure.

BMP (bone morphogenetic protein) receptors play an important role in preventing excess growth of vascular cells. Some individuals with PAH have mutations in BMP receptor (type II). Mutant, and to a lesser extent wild type, receptors are thought to decline in response to disease associated factors such as hypoxia and cytokines. However, the mechanisms leading to the decline in these receptors are not understood.

In the July 2010 issue of Experimental Biology and Medicine, Drs. Murakami, Mathew, Huang, Farahani, Peng, Olson and Etlinger at New York Medical College in Valhalla, NY found that a protein called Smurf1 is elevated in animal models of PAH. This protein is a ubiquitin ligase which can covalently attach ubiquitin to BMP receptors as well as regulate downstream signaling molecules. Such ubiquitin "tagging" leads to receptor endocytosis and degradation by proteasomes and/or lysosomes. Recent studies on cancer cell metastasis have linked Smurf1 with the RhoA/ROCK signaling pathway which has also been implicated in vasoconstriction and vascular remodeling in PAH. Thus, Smurf-1 may have even a broader role in PAH pathogenesis.

The researchers produced PAH in rats by treating with a chemical monocrotaline and in mice by exposure to hypoxia, two well established animal models for the disease. Increased levels of Smurf1 appeared in vascular tissue and could be visualized in endothelial and smooth muscle cells with a time course consistent with a casual role in PAH. Studies with cultured cell lines confirmed Smurf1 dependent degradation of BMP receptors. A mutated Smurf1 which lacked the ability to ligate ubiquitin was able to block BMP receptor degradation acting in a dominant negative manner. Murakami said "these results suggest that Smurf1 may be an attractive therapeutic target to block with agents like dominant negative Smurf-1 mutant or with siRNA constructs etc." Currently treatments for PAH can offer some amelioration of symptoms but no cure is available. Interfering with Smurf1 may offer promise in this regard but future research will need to confirm the role of Smurf1 in human PAH as well as explore the specificity of its actions.

Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine said "Murakami et al have demonstrated an elevation of Smurf 1, a ubiquitin ligase, in rat models of pulmonary arterial hypertension (PAH). Further they have demonstrated that Smurf1 can degrade BMP receptors that have a known relationship to PAH. This suggests that elevation of Smurf1 may play a role in the molecular basis of PAH".
-end-
Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit www.sebm.org. If you are interested in publishing in the journal please visit www.ebmonline.org.

Society for Experimental Biology and Medicine

Related Protein Articles from Brightsurf:

The protein dress of a neuron
New method marks proteins and reveals the receptors in which neurons are dressed

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Diets high in protein, particularly plant protein, linked to lower risk of death
Diets high in protein, particularly plant protein, are associated with a lower risk of death from any cause, finds an analysis of the latest evidence published by The BMJ today.

A new understanding of protein movement
A team of UD engineers has uncovered the role of surface diffusion in protein transport, which could aid biopharmaceutical processing.

A new biotinylation enzyme for analyzing protein-protein interactions
Proteins play roles by interacting with various other proteins. Therefore, interaction analysis is an indispensable technique for studying the function of proteins.

Substituting the next-best protein
Children born with Duchenne muscular dystrophy have a mutation in the X-chromosome gene that would normally code for dystrophin, a protein that provides structural integrity to skeletal muscles.

A direct protein-to-protein binding couples cell survival to cell proliferation
The regulators of apoptosis watch over cell replication and the decision to enter the cell cycle.

A protein that controls inflammation
A study by the research team of Prof. Geert van Loo (VIB-UGent Center for Inflammation Research) has unraveled a critical molecular mechanism behind autoimmune and inflammatory diseases such as rheumatoid arthritis, Crohn's disease, and psoriasis.

Resurrecting ancient protein partners reveals origin of protein regulation
After reconstructing the ancient forms of two cellular proteins, scientists discovered the earliest known instance of a complex form of protein regulation.

Sensing protein wellbeing
The folding state of the proteins in live cells often reflect the cell's general health.

Read More: Protein News and Protein Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.