UCI researchers develop world's first plastic antibodies

June 21, 2010

Irvine, Calif., June 21, 2010 -- UC Irvine researchers have developed the first "plastic antibodies" successfully employed in live organisms - stopping the spread of bee venom through the bloodstream of mice.

Tiny polymeric particles - just 1/50,000th the width of a human hair - were designed to match and encase melittin, a peptide in bee venom that causes cells to rupture, releasing their contents. Large quantities of melittin can lead to organ failure and death.

The polymer nanoparticles were prepared by "molecular imprinting" a technique similar to plaster casting: UCI chemistry professor Kenneth Shea and project scientist Yu Hoshino linked melittin with small molecules called monomers, solidifying the two into a network of long polymer chains. After the plastic hardened, they removed the melittin, leaving nanoparticles with minuscule melittin-shaped holes.

When injected into mice given high doses of melittin, these precisely imprinted nanoparticles enveloped the matching melittin molecules, "capturing" them before they could disperse and wreak havoc - greatly reducing deaths among the rodents.

"Never before have synthetic antibodies been shown to effectively function in the bloodstream of living animals," Shea says. "This technique could be utilized to make plastic nanoparticles designed to fight more lethal toxins and pathogens."

Takashi Kodama of Stanford University and Hiroyuki Koide, Takeo Urakami, Hiroaki Kanazawa and Naoto Oku of Japan's University of Shizuoka also contributed to the study, published recently in the Journal of the American Chemical Society.

Unlike natural antibodies produced by live organisms and harvested for medical use, synthetic antibodies can be created in laboratories at a lower cost and have a longer shelf life.

"The bloodstream includes a sea of competing molecules - such as proteins, peptides and cells - and presents considerable challenges for the design of nanoparticles," Shea says. "The success of this experiment demonstrates that these challenges can be overcome."
-end-
About the University of California, Irvine: Founded in 1965, UCI is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UCI is among the most dynamic campuses in the University of California system, with nearly 28,000 undergraduate and graduate students, 1,100 faculty and 9,000 staff. Orange County's largest employer, UCI contributes an annual economic impact of $3.9 billion. For more UCI news, visit www.today.uci.edu.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

UCI maintains an online directory of faculty available as experts to the media. To access, visit www.today.uci.edu/experts. For UCI breaking news, visit www.zotwire.uci.edu.

University of California - Irvine

Related Nanoparticles Articles from Brightsurf:

An ionic forcefield for nanoparticles
Nanoparticles are promising drug delivery tools but they struggle to get past the immune system's first line of defense: proteins in the blood serum that tag potential invaders.

Phytoplankton disturbed by nanoparticles
Products derived from nanotechnology are efficient and highly sought-after, yet their effects on the environment are still poorly understood.

How to get more cancer-fighting nanoparticles to where they are needed
University of Toronto Engineering researchers have discovered a dose threshold that greatly increases the delivery of cancer-fighting drugs into a tumour.

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.

3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?

Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.

Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.

A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.

Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.

Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.

Read More: Nanoparticles News and Nanoparticles Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.