Nav: Home

Rice yields researched to tackle food security issues

June 21, 2010

A pioneering project in the Philippines, which aims to develop a new, higher-yielding rice plant which could ease the threat of hunger for the poor, is being led by an academic at the University of Sheffield.

Currently, more than a billion people worldwide live on less than a dollar a day and nearly one billion live in hunger. Over the next 50 years, the population of the world will increase by about 50 per cent and water scarcity will grow. About half of the world´s population consumes rice as a staple cereal, so boosting its productivity is crucial to achieving long-term global food security.

The project, which is being led by Professor Paul Quick from the University's Department of Animal and Plant Sciences and coordinated by the International Rice Research Institute (IRRI), is hoping to considerably boost global rice production by using modern molecular tools to produce a more efficient and higher-yielding form of rice.

The work comes as the University of Sheffield launches a unique venture entitled Project Sunshine. The project aims to unite scientists in finding ways to harness the power of the sun and tackle one of the biggest challenges facing the world today: meeting the increasing food and energy needs of the world´s population in the context of an uncertain climate and global environment change.

The researchers are addressing this issue of food security by studying the mode of photosynthesis - the process by which plants use solar energy to capture carbon dioxide and convert it into the carbohydrates required for growth - used by rice. Unlike some plants, rice has a type of photosynthesis known as C3, in which the capture of carbon dioxide is relatively inefficient. Other plants, such as maize and sorghum, have evolved a much more efficient form of photosynthesis known as C4 and their crop yields are improved by more than 50 per cent.

Using a grant of US$11 million over three years from the Bill and Melinda Gates Foundation, the team are hoping to change the biochemistry and anatomy of rice leaves to increase grain yield by introducing a C4 mode of photosynthesis. Currently, the project is in the gene discovery stage, which involves randomly mutating sorghum and rice to try and determine which genes regulate and determine C4.

Research will shortly be moving into phase two, which will involve engineering rice to allow the team to test the gene function. In addition, for the first time, natural variations in rice are being studied using IRRI's world gene bank of rice to look for natural variation. In total, the project is expected to span over a 15 year period.

As a result of research into the re-engineering of photosynthesis in rice being conducted by this group, rice plants that can produce 50 per cent more grain using less fertilizer and less water will be brought a step closer to reality. The project will also act as a model project for changing any other C3 crops, (e.g. wheat and barley), into C4.

Professor Paul Quick from the University of Sheffield's Department of Animal and Plant Sciences is heading up the team, which includes a team of 70 researchers, as well as 20 international collaborators world-wide. He will be working with Professor Richard Leegood, also from the University´s Department of Animal and Plant Sciences and Professor Peter Horton, FRS, who has collaborated with the IRRI on improving rice photosynthesis for over 15 years.

Professor Paul Quick, from the Department of Animal and Plant Sciences at the University of Sheffield, said: "C4 rice is a completely novel idea. Nowhere else in the world and never before have scientists been able to supercharge a C3 plant and convert its photosynthetic mechanism into C4. A C4 photosynthetic engine in rice would increase the efficiency of solar energy conversion by 50 per cent and nearly double its water use efficiency, as well as improving its fertilizer-use efficiency. This innovation will improve the lives of hundreds of millions of poor people and contribute to protecting the natural environment."

Professor Peter Horton, from the University's Department of Biology and Biotechnology, said: "Increasing the efficiency of photosynthesis is probably essential if we are to deliver the required increase in crop yield needed for global food security. This is high risk/high reward research, and it is tremendous to see the University playing a leading role. This is exactly the kind of exciting, ground-breaking research which we are fostering within Project Sunshine."
-end-
Notes for editors:

The C4 Rice Consortium combines the strengths of a range of partners, including molecular biologists, geneticists, physiologists, biochemists, and mathematicians, representing leading research organizations worldwide. Members include Yale, Cornell, and Washington State universities in the United States; Oxford, Cambridge, Nottingham, and Sheffield universities in Britain; the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian National University, and James Cook University in Australia; Heinrich Heine University in Germany; Shanghai Institutes for Biological Sciences in China; Academia Sinica in Taiwan, Kyung Hee University in Korea and the University of Toronto in Canada.

About the International Rice Research Institute: The International Rice Research Institute (IRRI) is the world´s leading rice research and training center. Based in the Philippines, with offices in 13 other countries, IRRI is an autonomous, nonprofit institution focused on improving the well-being of present and future generations of rice farmers and consumers, particularly those with low incomes, while preserving natural resources. IRRI is one of 15 centers supported, in part, by members of the Consultative Group on International Agricultural Research (CGIAR; www.cgiar.org) and a range of other funding agencies.

About the Bill & Melinda Gates Foundation: Guided by the belief that every life has equal value, the Bill & Melinda Gates Foundation works to help all people lead healthy, productive lives. In developing countries, it focuses on improving people´s health and giving them the chance to lift themselves out of hunger and extreme poverty. In the United States, it seeks to ensure that all people, especially those with the fewest resources, have access to the opportunities they need to succeed in school and life. Based in Seattle, the foundation is led by CEO Jeff Raikes and co-chair William H. Gates Sr., under the direction of Bill and Melinda Gates and Warren Buffett.

To find out more about Project Sunshine, visit: http://www.shef.ac.uk/shine/

For further information please contact: Shemina Davis, Media Relations Officer, on 0114 2225339 or email shemina.davis@sheffield.ac.uk

To read other news releases about the University of Sheffield, visit http://www.shef.ac.uk/mediacentre/

University of Sheffield

Related Photosynthesis Articles:

Scientists design molecular system for artificial photosynthesis
A molecular system for artificial photosynthesis is designed to mimic key functions of the photosynthetic center in green plants -- light absorption, charge separation, and catalysis -- to convert solar energy into chemical energy stored by hydrogen fuel.
Photosynthesis in the dark? Unraveling the mystery of algae evolution
Researchers compared the photosynthetic regulation in glaucophytes with that in cyanobacteria, to elucidate the changes caused by symbiosis in the interaction between photosynthetic electron transfer and other metabolic pathways.
Mechanism behind the electric charges generated by photosynthesis
Photosynthesis requires a mechanism to produce large amounts of chemical energy without losing the oxidative power needed to break down water.
Research shows global photosynthesis on the rise
Researchers found a global historic record by analyzing gases trapped in Antarctic snow to see the rapid rise in photosynthesis over the past 200 years.
Artificial photosynthesis steps into the light
Rice University leads a project to create an efficient, simple-to-manufacture oxygen-evolution catalyst that pairs well with semiconductors for advanced solar cells.
New study shines light on photosynthesis
Researchers have solved a longstanding mystery in photosynthesis, a process used by plants and other organisms to convert light energy into chemical energy.
Study: Viruses support photosynthesis in bacteria -- an evolutionary advantage?
Viruses propagate by infecting a host cell and reproducing inside.
Accelerated chlorophyll reaction in microdroplets to reveal secret of photosynthesis
The research team of DGIST's fellow Hong-Gil Nam, discovered the natural control of chlorophyll activity.
Mechanism for photosynthesis already existed in primeval microbe
A Japanese research team has discovered an evolutionary model for the biological function that creates CO2 from glucose in photosynthesis.
WSU researchers discover unique microbial photosynthesis
Researchers at Washington State University have discovered a new type of cooperative photosynthesis that could be used in engineering microbial communities for waste treatment and bioenergy production.

Related Photosynthesis Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...