US Department of Defense helps move spinal cord injury treatment closer to clinical trials

June 21, 2010

The United States Department of Defense Spinal Cord Injury Research Program has announced a grant of more than a million dollars U.S. to support research at the Robarts Research Institute at The University of Western Ontario (Western). The spinal cord injury research team of Gregory Dekaban, Arthur Brown, Lynne Weaver and Paula Foster, in collaboration with Brian Kwon of the University of British Columbia and Kyle Petersen of the U.S. Naval Medical Research Center, is working on a new therapy designed to limit the damage caused by inflammation immediately following spinal cord injury. The grant will move their work, led by Dekaban, closer to a clinical trial.

Nearly a quarter of wounded military personnel requiring evacuation from the field suffer spinal cord or traumatic brain injury. As well, 12,000 new cases of spinal cord injury occur every year in the North American civilian population. Spinal cord injury creates physical, psychological and financial challenges to the injured and their families. These injuries are also a significant burden for health care systems.

Spinal cord injury occurs in two stages. The first is the physical injury from trauma; the second stage, that extends the initial damage, is caused in large part by inflammation in the spinal cord. "This antibody therapy is designed to be given by intravenous injection as soon as possible after a person comes into the emergency department with a spinal cord injury, or at least within 24 hours," explains Dekaban, a Robarts Scientist in the Molecular Brain Research Group and Professor in the Department of Microbiology and Immunology at Western's Schulich School of Medicine & Dentistry. "In our preclinical models, it's been shown to make a significant improvement in recovery. This antibody treatment could also be effective for traumatic brain injury. "

The antibody targets a protein known as CD11d on the surface of inflammatory cells that circulate in blood. CD11d is required by white blood cells to leave the bloodstream and enter the injured spinal cord. The anti-CD11d antibody is designed to block that process. By blocking the entry and retention of these white blood cells at the site of injury, the researchers successfully reduced inflammation and improved neurological recovery in preclinical models of spinal cord injury.

The research at Robarts so far has employed a mouse antibody that recognizes human CD11d. This new award from the Spinal Cord Injury Research Program funded by the Department of Defense Congressionally Directed Medical Research Program will support the development of a humanized antibody suitable for use in a clinical trial. This research will be carried out in conjunction with Eli Lilly and Company.

The spinal cord injury team at Robarts has been working on this project for a decade. "This project highlights the importance of peer-reviewed funding in producing new discoveries in neuroscience and the subsequent role of university-industry partnerships in commercializing such technologies," says Ravi Menon, Deputy Director of Robarts. "Robarts continues to excel at all aspects of the discovery cycle, with the rigorously evaluated results benefitting patients and creating commercial value."
-end-


University of Western Ontario

Related Spinal Cord Injury Articles from Brightsurf:

Stem cells can help repair spinal cord after injury
Spinal cord injury often leads to permanent functional impairment. In a new study published in the journal Science researchers at Karolinska Institutet in Sweden show that it is possible to stimulate stem cells in the mouse spinal cord to form large amounts of new oligodendrocytes, cells that are essential to the ability of neurons to transmit signals, and thus to help repair the spinal cord after injury.

Spinal cord injury increases risk for mental health disorders
A new study finds adults with traumatic spinal cord injury are at an increased risk of developing mental health disorders and secondary chronic diseases compared to adults without the condition.

Co-delivery of IL-10 and NT-3 to enhance spinal cord injury repair
Spinal cord injury (SCI) creates a complex microenvironment that is not conducive to repair; growth factors are in short supply, whereas factors that inhibit regeneration are plentiful.

IU scientists study link between energy levels, spinal cord injury
A team of researchers from Indiana University School of Medicine, in collaboration with the National Institute of Neurological Disorders and Stroke, have investigated how boosting energy levels within damaged nerve fibers or axons may represent a novel therapeutic direction for axonal regeneration and functional recovery.

UBCO professor simplifies exercise advice for spinal cord injury
Professor Kathleen Martin Ginis says a major barrier to physical activity for people with a spinal cord injury is a lack of knowledge or resources about the amount and type of activity needed to achieve health and fitness benefits.

Robotic trunk support assists those with spinal cord injury
A Columbia Engineering team has invented a robotic device -- the Trunk-Support Trainer (TruST) -- that can be used to assist and train people with spinal cord injuries (SCIs) to sit more stably by improving their trunk control, and thus gain an expanded active sitting workspace without falling over or using their hands to balance.

Does frailty affect outcomes after traumatic spinal cord injury?
A new study has shown that frailty is an important predictor of worse outcome after traumatic spinal cord injury in patients less than 75 years of age.

Sleep and sleepiness 'a huge problem' for people with spinal cord injury
A new study led by a University of Calgary researcher at the Cumming School of Medicine (CSM) finds that fatigue and sleep may need more attention in order to prevent issues like stroke after spinal cord injury.

From spinal cord injury to recovery
Spinal cord injury disconnects communication between the brain and the spinal cord, disrupting control over part of the body.

Transplanting adult spinal cord tissues: A new strategy of repair spinal cord injury
Spinal cord injury repair is one of the most challenging medical problems, and no effective therapeutic methods has been developed.

Read More: Spinal Cord Injury News and Spinal Cord Injury Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.