McGill researchers discover the cause of an inherited form of epilepsy

June 21, 2012

Researchers at McGill University have discovered the cause of an inherited form of epilepsy. The disease, known as double-cortex syndrome, primarily affects females and arises from mutations on a gene located on the X chromosome. Drs. Susanne Bechstedt and Gary Brouhard of the Department of Biology have used a highly advanced microscope to discover how these mutations cause a malformation of the human brain. The results of their study are published in the journal Developmental Cell.

When the brain develops in the uterus, new brain cells are born deep within the brain, near the center. These newborn brain cells then crawl out of the so-called "niche" where they were born and migrate outward to the edges of the brain. This outermost layer of the brain is known as the cerebral cortex and is the seat of all higher-level thinking and cognition.

In girls with a mutation on their X chromosome, the outward migration of brain cells unfortunately fails. Instead of making it all the way to the edges of the brain, some of the brain cells pile up on top of one another and form a secondary or "double-cortex." The activity of these abnormally placed brain cells gives rise to seizures and also, in some cases, mental retardation.

Drs. Bechstedt and Brouhard were able to purify the product of the mutated gene, a protein known as doublecortin, and to watch the protein in action under a microscope. This protein helps brain cells to build a scaffold inside themselves, much like the scaffolds at construction sites, built of "poles" called microtubules; these form a "skeleton" for the brain cells, known as the cytoskeleton. Brain cells require this internal skeleton to crawl and to migrate, much as humans need their skeletons to walk and run.

The McGill researchers discovered that, in order for doublecortin proteins to help build this scaffold, many doublecortin proteins must work together as a team. They found that disease-causing mutations cause a breakdown in this teamwork. This loss of teamwork is sufficient to prevent the brain cells from constructing a proper "skeleton."

This discovery has implications for treatments for a range of conditions, from other forms of epilepsy to spinal cord injuries. In each case, therapies are increasingly directed at triggering brain cells to extend their skeletons -- for example when re-growing a nerve ending past the site of a wound in the spinal cord. Understanding how brain cells construct their skeletons will open avenues for doctors to target the brain cell skeleton to extend and re-grow when needed.
-end-
This research was funded by the Canadian Institutes of Health Research.

McGill University

Related Epilepsy Articles from Brightsurf:

Focal epilepsy often overlooked
Having subtler symptoms, a form of epilepsy that affects only one part of the brain often goes undiagnosed long enough to cause unexpected seizures that contribute to car crashes, a new study finds.

Antibodies in the brain trigger epilepsy
Certain forms of epilepsy are accompanied by inflammation of important brain regions.

Breaching the brain's defense causes epilepsy
Epileptic seizures can happen to anyone. But how do they occur and what initiates such a rapid response?

Using connectomics to understand epilepsy
Abnormalities in structural brain networks and how brain regions communicate may underlie a variety of disorders, including epilepsy, which is one focus of a two-part Special Issue on the Brain Connectome in Brain Connectivity, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers.

Epilepsy: Triangular relationship in the brain
When an epileptic seizure occurs in the brain, the nerve cells lose their usual pattern and fire in a very fast rhythm.

How concussions may lead to epilepsy
Researchers have identified a cellular response to repeated concussions that may contribute to seizures in mice like those observed following traumatic brain injury in humans.

Understanding epilepsy in pediatric tumors
A KAIST research team led by Professor Jeong Ho Lee of the Graduate School of Medical Science and Engineering has recently identified a neuronal BRAF somatic mutation that causes intrinsic epileptogenicity in pediatric brain tumors.

Can medical marijuana help treat intractable epilepsy?
A new British Journal of Clinical Pharmacology review examines the potential of medicinal cannabis -- or medical marijuana -- for helping patients with intractable epilepsy, in which seizures fail to come under control with standard anticonvulsant treatment.

Fertility rates no different for women with epilepsy
'Myth-busting' study among women with no history of infertility finds that those with epilepsy are just as likely to become pregnant as those without.

Do women with epilepsy have similar likelihood of pregnancy?
Women with epilepsy without a history of infertility or related disorders who wanted to become pregnant were about as likely as their peers without epilepsy to become pregnant.

Read More: Epilepsy News and Epilepsy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.