How chameleons capture their prey

June 21, 2016

Despite their nonchalant appearance, chameleons are formidable predators, capturing their prey by whipping out their tongues with incredible precision. They can even capture preys weighing up to 30% of their own weight. In collaboration with the Muséum national d'Histoire naturelle de Paris, researchers from the Université de Mons (UMONS) and the Université libre de Bruxelles (ULB) have studied this amazing sticky weapon.

Chameleons are fascinating creatures with amazing characteristics. Their feet have opposable toes, giving them a tongs-like appearance, to firmly grip branches. Their eyes move independently of each other to provide 360 degree vision. Their skin changes colour via the active tuning of a lattice of nanocrystals contained in some cells. But their most outstanding characteristic is probably their ballistic tongue, allowing the capture of distant preys.

Despite their nonchalant appearance, chameleons are formidable predators, leaving little chance to their prey. During a capture, their tongue whips out with an acceleration up to 1500 m/s² and extends to reach a length twice that of the chameleon's body. They are also able to capture preys weighing up to 30% of their own weight. Sufficient adhesion between the prey and the tongue is therefore necessary to catch such preys.

Under the leadership of Fabian Brau from the ULB Faculty of Science's Nonlinear Physical Chemistry Unit, Pascal Damman from the UMONS Interfaces and Complex Fluids Laboratory, Faculty of Science researchers from the UMONS, ULB, and Vincent Bels from the Muséum national d'Histoire naturelle de Paris have just demonstrated that the mucus secreted at the tip of a chameleon's tongue has a viscosity 400 times larger than the one of human saliva. The tongue's deformability during projection, producing a large contact area with the prey, together with this viscous liquid, form a particularly efficient adhesive weapon.

Published in the Nature Physics journal on 20 June, this interdisciplinary study, combining experiments with a dynamical model of prey capture, allowed the researchers to shed light on the basic mechanisms used by chameleons to capture their preys.

The authors used mechanical tools combined with tongue morphology measurements to demonstrate that the viscous adhesion built up during a capture is large enough to catch preys with a high mass compared to that of chameleons. Their theoretical model compares favourably with experimental data on the maximum prey mass with respect to the chameleon size.

These results provide a new methodology for studying prey prehension by other predators, such as salamanders or toads, using the tongue to capture preys.
Fabian Brau, Déborah Lanterbecq, Leïla-Nastasia Zghikh, Vincent Bels, and Pascal Damman
Dynamics of prey prehension by chameleons through viscous adhesion
Nature Physics 2016, Advance Online Publication June 20, 2016, DOI:10.1038/nphys3795


Scientific contacts:

Pascal Damman
UMONS, Interfaces and Complex Fluids Laboratory
Tel.: +32 65 37 38 19, Email:

Fabian Brau
ULB Faculty of Science, Nonlinear Physical Chemistry Unit
Tel.: +32 2 650 59 12 - Email:

Université libre de Bruxelles

Related Predators Articles from Brightsurf:

Boo! How do mexican cavefish escape predators?
When startled, do all fish respond the same way? A few fish, like Mexican cavefish, have evolved in unique environments without any predators.

Herbivores, not predators, most at risk of extinction
One million years ago, the extinction of large-bodied plant-eaters changed the trajectory of life on Earth.

Bugs resort to several colours to protect themselves from predators
New research has revealed for the first time that shield bugs use a variety of colours throughout their lives to avoid predators.

Jellyfish contain no calories, so why do they still attract predators?
New study shows that jellyfish are an important food source for many animals.

'Matador' guppies trick predators
Trinidadian guppies behave like matadors, focusing a predator's point of attack before dodging away at the last moment, new research shows.

The European viper uses cloak-and-dazzle to escape predators
Research of the University of Jyväskylä demonstrates that the characteristic zig-zag pattern on a viper's back performs opposing functions during a predation event.

Predators help prey adapt to an uncertain future
What effect does extinction of species have on the evolution of surviving species?

To warn or to hide from predators?: New computer simulation provides answers
Some toxic animals are bright to warn predators from attacking them, and some hide the warning colors, showing them only at the very last moment when they are about to be attacked.

Dragonflies are efficient predators
A study led by the University of Turku, Finland, has found that small, fiercely predatory damselflies catch and eat hundreds of thousands of insects during a single summer -- in an area surrounding just a single pond.

Predators to spare
In 2014, a disease of epidemic proportions gripped the West Coast of the US.

Read More: Predators News and Predators Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to