Nav: Home

£4.5m 'Lab in a bubble' project could improve cancer care

June 21, 2016

A £4.5million University of Strathclyde project to produce bubble-sized 'laboratories' could boost cancer treatment, medical imaging and industrial processes.

Researchers aim to use high-powered lasers to conduct experiments in plasma bubbles so tiny that their diameters are equivalent to one tenth of a cross-section of a human hair. Plasma forms 99.999% of the matter in the universe.

Professor Dino Jaroszynski, of Strathclyde's Department of Physics, said: "We have a clear focus on fundamental physics but strive to apply the knowledge we gain. Important applications are medical, which could have a profound impact on society and quality of life.

"Another important objective is to reduce the size of coherent X-ray sources from kilometres to millimetres. Current X-ray free-electron lasers are kilometres long and cost up to €1billion. We plan to make coherent X-ray sources widely available and relatively inexpensive, thus enabling many, many applications.

"Short duration and brilliant pulses of X-rays are very useful for following the dynamics of the structure of matter, to monitor chemical reactions, or for taking holographic snapshots to make 3D microscopic movies.

"There is, of course, a large demand for improved cancer therapy in the UK. Particle therapy is currently seen as a possible route for improving treatment of certain types of cancer and the quality of life of patients - particularly young children.

"The benefits of the project will be wide-ranging, from pure academic research to numerous new applications in medicine and industry.

"Some of these applications could have a very high impact, including improvements in medical radiotherapy, nuclear fusion, and imaging of dense matter."

Professor Jaroszynski believes that, by creating the bubble-sized radiation sources and compact accelerators, his team's research could also drive improvements in other sectors.

He said: "Compact gamma-ray sources could have an impact on the detection of nuclear material at borders, which would contribute to enhancing global security.

"Imaging of stored nuclear waste could also have an impact on the legacy of nuclear power generation."

Professor Jaroszynski told of his excitement at receiving the £4.5 million EPSRC funding.

He added: "I'm incredibly honoured to be given this support and it's an acknowledgement of the fantastic work carried out by my research team.

"I'm passionate about the basic physics but the really important part of this project is that it will benefit people's lives - and, ultimately, help save them too through improved diagnosis and treatment."

Co-investigators on the project include the Universities of Glasgow and St Andrews, and Lancaster University.

University of Strathclyde

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...