New 3-D display takes the eye fatigue out of virtual reality

June 21, 2017

WASHINGTON -- There is a great deal of excitement around virtual reality (VR) headsets that display a computer-simulated world and augmented reality (AR) glasses that overlay computer-generated elements with the real world. Although AR and VR devices are starting to hit the market, they remain mostly a novelty because eye fatigue makes them uncomfortable to use for extended periods. A new type of 3D display could solve this long-standing problem by greatly improving the viewing comfort of these wearable devices.

"We want to replace currently used AR and VR optical display modules with our 3D display to get rid of eye fatigue problems," said Liang Gao, from the University of Illinois at Urbana-Champaign. "Our method could lead to a new generation of 3D displays that can be integrated into any type of AR glasses or VR headset."

Gao and Wei Cui report their new optical mapping 3D display in The Optical Society (OSA) journal Optics Letters. Measuring only 1 x 2 inches, the new display module increases viewing comfort by producing depth cues that are perceived in much the same way we see depth in the real-world.

Overcoming eye fatigue

Today's VR headsets and AR glasses present two 2D images in a way that cues the viewer's brain to combine the images into the impression of a 3D scene. This type of stereoscopic display causes what is known as a vergence-accommodation conflict, which over time makes it harder for the viewer to fuse the images and causes discomfort and eye fatigue.

The new display presents actual 3D images using an approach called optical mapping. This is done by dividing a digital display into subpanels that each create a 2D picture. The subpanel images are shifted to different depths while the centers of all the images are aligned with one another. This makes it appear as if each image is at a different depth when a user looks through the eyepiece. The researchers also created an algorithm that blends the images, so that the depths appear continuous, creating a unified 3D image.

The key component for the new system is a spatial multiplexing unit that axially shifts sub-panel images to the designated depths while laterally shifting the centers of sub-panel images to the viewing axis. In the current setup, the spatial multiplexing unit is made of spatial light modulators that modify the light according to a specific algorithm developed by the researchers.

Although the approach would work with any modern display technology, the researchers used an organic light emitting diode (OLEDs) display, one of the newest display technologies to be used on commercial televisions and mobile devices. The extremely high resolution available from the OLED display ensured that each subpanel contained enough pixels to create a clear image.

"People have tried methods similar to ours to create multiple plane depths, but instead of creating multiple depth images simultaneously, they changed the images very quickly," said Gao. "However, this approach comes with a trade-off in dynamic range, or level of contrast, because the duration each image is shown is very short."

Creating depth cues

The researchers tested the device by using it to display a complex scene of parked cars and placing a camera in front of the eyepiece to record what the human eye would see. They showed that the camera could focus on cars that appeared far away while the foreground remained out of focus. Similarly, the camera could be focused on the closer cars while the background appeared blurry. This test confirmed that the new display produces focal cues that create depth perception much like the way humans perceive depth in a scene. This demonstration was performed in black and white, but the researchers say the technique could also be used to produce color images, although with a reduced lateral resolution.

The researchers are now working to further reduce the system's size, weight and power consumption. "In the future, we want to replace the spatial light modulators with another optical component such as a volume holography grating," said Gao. "In addition to being smaller, these gratings don't actively consume power, which would make our device even more compact and increase its suitability for VR headsets or AR glasses."

Although the researchers don't currently have any commercial partners, they are in discussions with companies to see if the new display could be integrated into future AR and VR products.
-end-
Paper: W. Cui, L. Gao, "Optical Mapping Near-eye Three-dimensional Display with Correct Focus Cues," Opt. Lett., Volume 42, Issue 13, 2475-2478 (2017). DOI: 10.1364/OL.42.002475.

About Optics Letters

Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals and fiber optics.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

Media Contacts:

Rebecca B. Andersen
The Optical Society
randersen@osa.org
+1 202.416.1443

Joshua Miller
The Optical Society
jmiller@osa.org
+1 202.416.1435

The Optical Society

Related Virtual Reality Articles from Brightsurf:

Virtual reality helps measure vulnerability to stress
Behavioral scientists at EPFL have developed a virtual reality test that assesses a person's vulnerability to stress while exploring immersive environments.

Virtual reality forests could help understanding of climate change
The effects of climate change are sometimes difficult to grasp, but now a virtual reality forest, created by geographers, can let people walk through a simulated forest of today and see what various futures may hold for the trees.

New virtual reality software allows scientists to 'walk' inside cells
Virtual reality software which allows researchers to 'walk' inside and analyze individual cells could be used to understand fundamental problems in biology and develop new treatments for disease.

From virtual to reality! Virtual training improves physical and cognitive functions
Researchers at the Smart-Aging Research Center (IDAC) at Tohoku University have developed an innovative training protocol that, utilizing immersive virtual reality (IVR), leads to real physical and cognitive benefits.

Virtual and augmented reality: warnings about the ethical dangers
Research on virtual reality started in the eighties, but it is now that good quality is available to the public and it can become a mass consumer product soon.

Easing the burden of coronavirus with virtual reality
A new article discusses the psychological stresses imposed by the coronavirus pandemic and suggests that virtual reality can help alleviate the psychological impact of the need for social isolation.

Virtual reality makes empathy easier
Virtual reality activates brain networks that increase your ability to identify with other people, according to new research published in eNeuro.

Physiotherapy could be done at home using virtual reality
Virtual reality could help physiotherapy patients complete their exercises at home successfully thanks to researchers at WMG, University of Warwick, who managed to combine VR technology with 3D motion capture.

Using virtual reality to help individuals with autism spectrum disorder
Novel interventions using virtual reality to aid individuals with autism spectrum disorder (ASD) handle common scenarios may include helping youngsters navigate air travel.

Virtual reality illuminates the power of opioid-associated memories
The brain acts differently when remembering environments associated with drug use.

Read More: Virtual Reality News and Virtual Reality Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.