Nav: Home

New 3-D display takes the eye fatigue out of virtual reality

June 21, 2017

WASHINGTON -- There is a great deal of excitement around virtual reality (VR) headsets that display a computer-simulated world and augmented reality (AR) glasses that overlay computer-generated elements with the real world. Although AR and VR devices are starting to hit the market, they remain mostly a novelty because eye fatigue makes them uncomfortable to use for extended periods. A new type of 3D display could solve this long-standing problem by greatly improving the viewing comfort of these wearable devices.

"We want to replace currently used AR and VR optical display modules with our 3D display to get rid of eye fatigue problems," said Liang Gao, from the University of Illinois at Urbana-Champaign. "Our method could lead to a new generation of 3D displays that can be integrated into any type of AR glasses or VR headset."

Gao and Wei Cui report their new optical mapping 3D display in The Optical Society (OSA) journal Optics Letters. Measuring only 1 x 2 inches, the new display module increases viewing comfort by producing depth cues that are perceived in much the same way we see depth in the real-world.

Overcoming eye fatigue

Today's VR headsets and AR glasses present two 2D images in a way that cues the viewer's brain to combine the images into the impression of a 3D scene. This type of stereoscopic display causes what is known as a vergence-accommodation conflict, which over time makes it harder for the viewer to fuse the images and causes discomfort and eye fatigue.

The new display presents actual 3D images using an approach called optical mapping. This is done by dividing a digital display into subpanels that each create a 2D picture. The subpanel images are shifted to different depths while the centers of all the images are aligned with one another. This makes it appear as if each image is at a different depth when a user looks through the eyepiece. The researchers also created an algorithm that blends the images, so that the depths appear continuous, creating a unified 3D image.

The key component for the new system is a spatial multiplexing unit that axially shifts sub-panel images to the designated depths while laterally shifting the centers of sub-panel images to the viewing axis. In the current setup, the spatial multiplexing unit is made of spatial light modulators that modify the light according to a specific algorithm developed by the researchers.

Although the approach would work with any modern display technology, the researchers used an organic light emitting diode (OLEDs) display, one of the newest display technologies to be used on commercial televisions and mobile devices. The extremely high resolution available from the OLED display ensured that each subpanel contained enough pixels to create a clear image.

"People have tried methods similar to ours to create multiple plane depths, but instead of creating multiple depth images simultaneously, they changed the images very quickly," said Gao. "However, this approach comes with a trade-off in dynamic range, or level of contrast, because the duration each image is shown is very short."

Creating depth cues

The researchers tested the device by using it to display a complex scene of parked cars and placing a camera in front of the eyepiece to record what the human eye would see. They showed that the camera could focus on cars that appeared far away while the foreground remained out of focus. Similarly, the camera could be focused on the closer cars while the background appeared blurry. This test confirmed that the new display produces focal cues that create depth perception much like the way humans perceive depth in a scene. This demonstration was performed in black and white, but the researchers say the technique could also be used to produce color images, although with a reduced lateral resolution.

The researchers are now working to further reduce the system's size, weight and power consumption. "In the future, we want to replace the spatial light modulators with another optical component such as a volume holography grating," said Gao. "In addition to being smaller, these gratings don't actively consume power, which would make our device even more compact and increase its suitability for VR headsets or AR glasses."

Although the researchers don't currently have any commercial partners, they are in discussions with companies to see if the new display could be integrated into future AR and VR products.
-end-
Paper: W. Cui, L. Gao, "Optical Mapping Near-eye Three-dimensional Display with Correct Focus Cues," Opt. Lett., Volume 42, Issue 13, 2475-2478 (2017). DOI: 10.1364/OL.42.002475.

About Optics Letters

Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals and fiber optics.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

Media Contacts:

Rebecca B. Andersen
The Optical Society
randersen@osa.org
+1 202.416.1443

Joshua Miller
The Optical Society
jmiller@osa.org
+1 202.416.1435

The Optical Society

Related Virtual Reality Articles:

New 3-D display takes the eye fatigue out of virtual reality
A new type of 3-D display could solve the long-standing problem eye fatigue when using VR and AR equipment by greatly improving the viewing comfort of these wearable devices.
A glove powered by soft robotics to interact with virtual reality environments
Engineers at UC San Diego are using soft robotics technology to make light, flexible gloves that allow users to feel tactile feedback when they interact with virtual reality environments.
The 'reality' of virtual reality pornography
How the latest digital technology could blur the line between reality and fantasy, pushing the dangers of porn to a whole new level.
Physical keyboards make virtual reality typing easier
What's better than a holographic keyboard? A real one, apparently.
Can virtual reality help us prevent falls in the elderly and others?
Every year, falls lead to hospitalization or death for hundreds of thousands of elderly Americans.
Virtual reality therapy helps decrease pain in hospitalized patients
Virtual reality therapy is effective in significantly reducing pain for hospitalized patients, according to a new Cedars-Sinai study.
Using virtual reality to catch a real ball
Disney Research scientists have found innovative ways to enhance virtual experiences involving interactions with physical objects by showing how a person using a virtual reality system can use it to reliably catch a real ball.
Studying altruism through virtual reality
This new study -- published in the journal Neuropsychologia -- immersed participants in a virtual environment that reproduced a building on fire which they had to evacuate in a hurry, deciding whether to save their lives or help rescue an injured person.
Virtual reality training for 'safety-critical' jobs
New virtual reality training could help prevent accidents in 'safety-critical' industries like the NHS, aviation, the military and nuclear power.
New virtual reality technology may improve motor skills in damaged limbs
New Tel Aviv University research suggests that a combination of traditional physical therapy and technology may improve the motor skills and mobility of an impaired hand by having its healthy partner hand lead by example through virtual reality training.

Related Virtual Reality Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...