Nav: Home

Neurons that regenerate, neurons that die

June 21, 2017

The optic nerve is vital for vision -- damage to this critical structure can lead to severe and irreversible loss of vision. Fengfeng Bei, PhD, a principal investigator in the Department of Neurosurgery at Brigham and Women's Hospital, and his colleagues want to understand why the optic nerve -- as well as other parts of the central nervous system including the brain and spinal cord -- cannot be repaired by the body. In particular, Bei's lab focuses on axons, the long processes of neurons that serve as signaling wires. In a new study published in Neuron, Bei, Michael Norsworthy in Zhigang He's lab at Boston Children's Hospital and colleagues report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others. Unraveling exactly which signals can help or hinder axon regeneration may eventually lead to new and precise treatment strategies for restoring vision or repairing injury.

"Our long term goal is to repair brain, spinal cord or eye injury by regenerating functional connections," said Bei. "The goal will be to regenerate as many subtypes of neurons as possible. Our results here suggest that different subtypes of neurons may respond differently to the same factors. This may mean that when we reach the point of developing new therapies, we may need to consider combination therapies for optimal recovery."

Previous studies using the optic nerve as a model for injury have found that manipulating transcription factors -- the master control switches of genes - might represent a promising avenue for stimulating axon regeneration. In the current study, researchers focused on transcription factors likely to influence the early development of retinal ganglion cells (RGCs). There are at least 30 types of RGCs in the human eye, which control different aspects of vision, and the researchers were interested in the effects of transcription factors on various types of RGCs. Using a mouse model of optic nerve injury, the research team found that increasing the production of a transcription factor known as Sox11 appeared to help axons grow past the site of injury. However, the team observed that the very same transcription factor also efficiently killed a type of RGCs known as alpha-RGCs which would preferentially survive the injury if untreated.

Bei notes that the heterogeneity of the nervous system -- the inclusion of different cells with different properties and functions -- will be an important consideration as researchers work to reprogram and, ultimately, restore the optic nerve, brain or spinal cord after injury.
-end-
Bei is a co-first and co-senior author of this study. Two other senior authors are Zhigang He, PhD, BM, at Boston Children's Hospital and Giovanni Coppola, MD, at University of California, Los Angeles.

Paper cited: Norsworthy M et al. "Sox11 Expression Promotes Regeneration of Some Retinal Ganglion Cell Types but Kills Others" Neuron DOI: 10.1016/j.neuron.2017.05.035

Brigham and Women's Hospital

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

The Neuron: Cell and Molecular Biology
by Irwin B. Levitan (Author), Leonard K. Kaczmarek (Author)

The Myth of Mirror Neurons: The Real Neuroscience of Communication and Cognition
by W. W. Norton & Company

The Neuron: Cell and Molecular Biology
by Irwin B. Levitan (Author), Leonard K. Kaczmarek (Author)

From Neuron to Brain (5th Ed)
by John G. Nicholls (Author), A. Robert Martin (Author), David A. Brown (Author), Mathew E. Diamond (Author), David A. Weisblat (Author), Paul A. Fuchs (Author)

From Neurons to Neighborhoods : The Science of Early Childhood Development
by Committee on Integrating the Science of Early Childhood Development (Author), Youth, and Families Board on Children (Author), National Research Council (Author), Committee on Integrating the Science of Early Childhood Development (Author), Jack P. Shonkoff (Editor), Deborah A. Phillips (Editor)

From Photon to Neuron: Light, Imaging, Vision
by Philip Nelson (Author)

The 7 Secrets of Neuron Leadership: What Top Military Commanders, Neuroscientists, and the Ancient Greeks Teach Us about Inspiring Teams
by W. Craig Reed (Author), Gordon R. England (Foreword)

Neurons & Neurotransmitters Wall Chart: 8271 (Physiology)
by Scientific Publishing (Author)

Neurons in Action 2: Tutorials and Simulations using NEURON
by John W. Moore (Author), Ann E. Stuart (Author)

Spiking Neuron Models: Single Neurons, Populations, Plasticity
by Wulfram Gerstner (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Circular
We're told if the economy is growing, and if we keep producing, that's a good thing. But at what cost? This hour, TED speakers explore circular systems that regenerate and re-use what we already have. Guests include economist Kate Raworth, environmental activist Tristram Stuart, landscape architect Kate Orff, entrepreneur David Katz, and graphic designer Jessi Arrington.
Now Playing: Science for the People

#504 The Art of Logic
How can mathematics help us have better arguments? This week we spend the hour with "The Art of Logic in an Illogical World" author, mathematician Eugenia Cheng, as she makes her case that the logic of mathematics can combine with emotional resonance to allow us to have better debates and arguments. Along the way we learn a lot about rigorous logic using arguments you're probably having every day, while also learning a lot about our own underlying beliefs and assumptions.