Nav: Home

Role aerosols play in climate change unlocked by spectacular Icelandic volcanic eruption

June 21, 2017

A spectacular six-month Icelandic lava field eruption could provide the crucial key for scientists to unlock the role aerosols play in climate change, through their interactions with clouds.

An international team of climate scientists, led by the University of Exeter, have meticulously studied the effects that the 2014-15 eruption at Holuhraun, in Iceland had on cloud formations in the surrounding region.

They found that the 2014-15 Holuhraun fissure eruption, the largest since Laki which erupted for eight months in 1783-4, emitted sulphur dioxide at a higher rate than all 28 European countries added together causing a massive plume of sulphate aerosol particles over the North Atlantic.

As would be expected, these aerosols reduced the size of cloud droplets, but contrary to expectations did not increase the amount of water in the clouds.

The researchers believe these startling results could significantly reduce uncertainties in future climate projections by outlining the impact of sulphate aerosols formed from human industrial emissions on climate change.

The pioneering study is published in leading scientific journal, Nature, on Thursday 22 June.

Dr Florent Malavelle, lead author of the study and from the Mathematics department at the University of Exeter said: "The huge volcanic eruption provided the perfect natural experiment in which to calculate the interaction between aerosols and clouds.

"We know that aerosols potentially have a large effect on climate, and particularly through their interactions with clouds. However the magnitude of this effect has been uncertain. This study not only gives us the prospect of ending this uncertainty but, more crucially, offers us the chance to reject a number of existing climate models, which means we can predict future climate change far more accurately than ever before."

Aerosols play a pivotal role in determining the properties of clouds as they act as the nuclei on which water vapour in the atmosphere condenses to form clouds.

Sulphate aerosol has long been recognised as the most significant atmospheric aerosol from industrial sources, but other natural sources of sulphate aerosol also exist, including that formed from sulphur dioxide release as a result of volcanic eruptions.

The 2014-15 Holuhraun eruption is thought to have emitted between 40,000-100,000 tons of sulphur dioxide every single day during its eruptive phase. Using state-of-the-art climate system models, combined with detailed satellite retrievals supplied by NASA and the Université libre de Bruxelles, the research team were able to study the complex nature of the cloud cover formed as a result of the eruption.

They found that the size of the water droplets produce was reduced, which in turn led to cloud brightening - which results in an increased fraction of incoming sunlight being reflected back into space and, ultimately, providing a cooling effect on the climate.

Crucially however, these aerosols had no discernible effect on many other cloud properties, including the amount of liquid water that the clouds hold and the cloud amount. The team believe the research shows that cloud systems are "well buffered" against aerosol changes in the atmosphere.

Professor Jim Haywood, co-author of the paper and also from the University of Exeter added: "Explosive and effusive volcanic eruptions are very different. The massive explosive eruption of Pinatubo in 1991, which injected aerosol to altitudes of 25km+ into the stratosphere, has been the go-to event for improving our model simulations of the impact of explosive volcanic eruptions on climate.

"Now volcanoes have provided a new clue in the climate problem: how aerosols emitted at altitudes similar to those from human emissions impact the climate. Without a doubt, the effusive eruption at Holuhraun will become the go-to study in this regard."
-end-


University of Exeter

Related Climate Change Articles:

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.