Nav: Home

Trash-picking seagulls poop tons of nutrients

June 21, 2017

DURHAM, N.C. -- At least 1.4 million seagulls feed at landfills across North America, which aside from the nuisance it might pose, is also a threat to the health of nearby waters, a new Duke University study finds.

"We estimate these gulls transport and deposit an extra 240 tons of nitrogen and 39 tons of phosphorus into nearby lakes or reservoirs in North America each year through their feces," said lead author Scott Winton, a 2016 doctoral graduate of Duke's Nicholas School of the Environment.

The added nutrients contained in the birds' droppings can contribute to extensive algal blooms that rob surface waters of much of the oxygen needed to sustain healthy aquatic animal life -- a process known as eutrophication.

Oxygen depletion and algal toxins that result from the blooms can have far-reaching ecological and economic impacts, including fish kills, increased costs for local governments, and reduced recreational or fishing values in affected waters.

"It costs local U.S. governments an estimated $100 million a year in nutrient offset credits to address or prevent the problem and maintain nutrient levels at or below the total maximum daily load threshold for water quality," said Mark River, a doctoral student at Duke's Nicholas School, who conducted the research with Winton.

The scale of the problem and the cumulative cost of dealing with it may be even larger than the new study suggests, said Winton, who is now a visiting postdoctoral fellow at ETHZurich, a science and technology university in Switzerland.

"We estimated and mapped a landfill-gull population of 1.4 million based on documented sightings reported in the eBird Citizen Science database. But the actual population is probably greater than 5 million," Winton said. "That means the amount of nutrients deposited in the lakes, and the costs of preventing or remediating the problem, could be substantially higher."

Winton and River published their study, which is the first to look at the transport of nutrients into surface waters from seagulls at landfills, on June 15 in the journal Water Research.

They conducted the research at landfills near two major drinking water reservoirs -- Jordan Lake and Falls Lake - that serve the Raleigh-Durham region of North Carolina. Nitrogen and phosphorus loading data from these two lakes were then scaled up to estimate total loading at water bodies near landfills across North America using a well-established model for measuring the nutrient transport of carnivorous birds.

The findings are applicable to lakes and reservoirs in other parts of the world, as well.

"The idea that gull feces can be a major water quality problem may sound comical -- until you look at data from an individual lake," Winton said. "In Jordan Lake, for instance, we found that a local flock of 49,000 ring-billed gulls deposit landfill feces containing nearly 1.2 tons of phosphorus into the lake annually."

That amount, he said, is equivalent to roughly half of the total phosphorus load reduction target established for the New Hope Creek watershed of Jordan Lake. Offsetting this added phosphorus costs local governments about $2.2 million annually -- largely through long-term programs aimed at reducing other sources of inflowing nutrients such as urban stormwater or agricultural runoff.

Reducing the size of the gull flocks may also be an option worth pursuing, Winton said. Reducing the size of open landfills, and covering trash more quickly after it is dumped, are among the ways managers can reduce the gulls' easy access to a food supply and encourage a flock to disperse to other feeding habitats.

"There's a decent history of local governments implementing gull management at landfills because of fears about airplane strikes or because of the nuisance factor to nearby communities," Winton said. "It might be cost-effective to pursue some of these non-lethal mitigation methods to reduce nutrient loading, as well."
-end-
Funding for the study came from the Duke University Wetland Center.

CITATION: "The Biogeochemical Implications of Massive Gull Flocks at Landfills," R. Scott Winton and Mark River. Water Research, Online June 8, 2017. DOI: 10.1016/j.watres.2017.05.076

Duke University

Related Nitrogen Articles:

Fixing the role of nitrogen in coral bleaching
A unique investigation highlights how excess nitrogen can trigger coral bleaching in the absence of heat stress.
Universities release results on nitrogen footprints
Researchers have developed a large-scale method for calculating the nitrogen footprint of a university in the pursuit of reducing nitrogen pollution, which is linked to a cascade of negative impacts on the environment and human health, such as biodiversity loss, climate change, and smog.
A battery prototype powered by atmospheric nitrogen
As the most abundant gas in Earth's atmosphere, nitrogen has been an attractive option as a source of renewable energy.
Northern lakes respond differently to nitrogen deposition
Nitrogen deposition caused by human activities can lead to an increased phytoplankton production in boreal lakes.
Researchers discover greenhouse bypass for nitrogen
An international team discovers that production of a potent greenhouse gas can be bypassed as soil nitrogen breaks down into unreactive atmospheric N2.
Bacterial mechanism converts nitrogen to greenhouse gas
Cornell University researchers have discovered a biological mechanism that helps convert nitrogen-based fertilizer into nitrous oxide, an ozone-depleting greenhouse gas.
Going against the grain -- nitrogen turns out to be hypersociable!
Nitrogen is everywhere: even in the air there is four times as much of it as oxygen.
Soybean nitrogen breakthrough could help feed the world
Washington State University biologist Mechthild Tegeder has developed a way to dramatically increase the yield and quality of soybeans.
Trading farmland for nitrogen protection
Excess nitrogen from agricultural runoff can enter surface waters with devastating effects.
Measure of age in soil nitrogen could help precision agriculture
What's good for crops is not always good for the environment.

Related Nitrogen Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...