Nav: Home

Pollinator extinctions alter structure of ecological networks

June 21, 2017

The absence of a single dominant bumblebee species from an ecosystem disrupts foraging patterns among a broad range of remaining pollinators in the system -- from other bees to butterflies, beetles and more, field experiments show.

Biology Letters published the research, which may have implications for the survival of both rare wild plants and major food crops as many pollinator species are in decline.

"We see an ecological cascade of effects across the whole pollinator community, fundamentally changing the structure of plant-pollinator interaction networks," says Berry Brosi, a biologist at Emory University and lead author of the study. "We can see this shift in who visits which plant even in pollinators that are not closely related to the bumblebee species that we remove from the system."

If a single, dominant species of bumblebee mainly visits an alpine sunflower, for instance, other pollinators -- including other species of bumblebees -- are less likely to visit alpine sunflowers. If the dominant bumblebee is removed, however, the dynamic changes.

"When the sunflowers became less crowded and more available, a broader range of pollinators chose to visit them," Brosi says.

The field experiments, based in the Colorado Rockies, also showed that the removal of a dominant bumblebee species led to fewer plant species being visited on average. "That was a surprise," Brosi says. "If a nectar resource is abundant and highly rewarding, more types of pollinators will go for it, leaving out some of the rarer plants that some of the other pollinator species normally specialize in."

The findings are important since most flowering plants and food crops need pollinators to produce seeds.

"Basically, for almost every pollinator group that we have good data for, we've seen declines in those pollinators," Brosi says. "The results of our field experiments suggest that losses of pollinator species -- at a local population level or on a global, true extinction scale -- are likely to have bigger impacts on plant populations than previously predicted by simulation models."

The experiments were done at the Rocky Mountain Biological Laboratory near Crested Butte, Colorado. Located at 9,500 feet, the facility's subalpine meadows are too high for honeybees, but they are filled with a variety of bumblebees and other pollinators.

The study included a series of 20-meter-square wildflower plots. Each was evaluated in a control state, left in its natural condition, and in a manipulated state, in which bumblebees of just one species had been removed using nets. The bumblebees were later released unharmed when the experiments were over.

The work built on 2013 research led by Brosi that focused on bumblebees and one target plant species, alpine larkspur. That study showed how removing a bumblebee species disrupted floral fidelity, or specialization, among the remaining bees in the system, leading to less successful plant reproduction.

For the current paper, the researchers looked at a system of more than 30 species of pollinators and their interactions with 43 plants species.

"There's been a lot of observational research done on plant-pollinator networks," Brosi said. "One of the general findings is that they have a really consistent structure. That tends to hold true almost irrespective of ecosystem and geographic area, from the northeastern coast of Greenland to tropical rainforests."

Mathematical simulation models have suggested that plant-pollinator networks would have good resiliency if there is an extinction in the system, based on the assumption that the network structure would remain consistent.

"Our experiments show that this assumption is not tenable," Brosi says. "These networks are dynamic and when a pollinator species is missing, we're going to see both qualitative and quantitative changes. Future simulation models need to incorporate ecological processes like competition that can shape which pollinators interact with which plants."
-end-
Co-authors of the study are Kyle Niezgoda, who worked on the project as an undergraduate in Emory's Department of Environmental Sciences, and Heather Briggs of the University of California, Santa Cruz. The National Science Foundation funded the work.

Emory Health Sciences

Related Bees Articles:

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
Where are the bees? Tracking down which flowers they pollinate
Earlham Institute (EI), with the University of East Anglia (UEA), have developed a new method to rapidly identify the sources of bee pollen to understand which flowers are important for bees.
Pesticides deliver a one-two punch to honey bees
A new paper in Environmental Toxicology and Chemistry reveals that adjuvants, chemicals commonly added to pesticides, amplify toxicity affecting mortality rates, flight intensity, colony intensity, and pupae development in honey bees.
Bees can count with just four nerve cells in their brains
Bees can solve seemingly clever counting tasks with very small numbers of nerve cells in their brains, according to researchers at Queen Mary University of London.
Trees for bees
Planting more hedgerows and trees could hold the key to helping UK bees thrive once again, a new study argues.
The secret to better berries? Wild bees
New research shows wild bees are essential for producing larger and better blueberry yields - with plumper, faster-ripening berries.
How do flying bees make perfect turns?
Bees adjust their speed to keep turning forces constant, new research from the Queensland Brain Institute, The University of Queensland shows.
Bees on the brink
Using an innovative robotic platform to observe bees' behavior, Harvard researchers showed that, following exposure to neonicotinoid pesticides -- the most commonly-used class of pesticides in agriculture -- bees spent less time nursing larvae and were less social that other bees.
Why do we love bees but hate wasps?
A lack of understanding of the important role of wasps in the ecosystem and economy is a fundamental reason why they are universally despised whereas bees are much loved, according to UCL-led research.
The more pesticides bees eat, the more they like them
Bumblebees acquire a taste for pesticide-laced food as they become more exposed to it, a behavior showing possible symptoms of addiction.
More Bees News and Bees Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.