Nav: Home

African leopards revealed: Study documents minute-to-minute behavior of elusive cats

June 21, 2017

The elusive behavior of the African leopard has been revealed in great detail for the first time as part of a sophisticated study that links the majestic cat's caloric demands and its drive to kill.

A team led by Chris Wilmers, associate professor of environmental studies at the University of California, Santa Cruz, produced an unprecedented picture of this carnivore's predatory and reproductive behaviors by outfitting the cats with high-tech wildlife tracking collars equipped with GPS technology and an accelerometer to measure energy output.

"This is the first time we've had really detailed energetic data from a wild terrestrial mammal over an extended period," said Wilmers, lead author of a new paper, "Energetics-informed Behavioral States Reveal the Drive to Kill in African Leopards," which appears today (June 21, 2017) in the online edition of the journal Ecosphere.

The team gathered data from five animals over two months: one adult male; one adult female with one cub; one adult female without cubs; one yearling male cub; and a young "dispersal-aged" male ready to establish his own territory. "The sample size is small, but we got lucky with the diversity of age and sex," noted Wilmers.

Information gleaned from the collars allowed Wilmers' team to match the leopards' behavior with time and place, enabling them to assess the energetic "costs" of reproductive behavior--dispersal and territorial patrol for males; parenting for females.

The study revealed that for male African leopards, territorial patrol activities account for 26 percent of their daily caloric intake; for females, parenting a one-year old offspring consumes 8 percent of their calories.

"Energetics is the ultimate currency for an animal's survival," said Wilmers. "To survive, an animal needs to balance the calories it's expending with the calories it's taking in. If it wants to reproduce, it has to run an energetic surplus."

Wilmers, a wildlife ecologist who studies animal behavior and its cascading effects on ecosystems, continued: "Based on what the leopards are doing, they run up different energetic budgets, which in turn influence their drive to kill. They might kill more prey, bigger prey, or go after more desirable prey in more dangerous places--closer to humans, for example."

One of the most striking behaviors described in the study was a kill by the adult male leopard. The data document him approaching a small village in a meandering fashion. He attacks and kills a goat inside a pen, then spends five minutes dragging the goat across the river to a spot where vegetation gives him the cover he needs to begin feeding.

"It gives us incredible insight into their behavior to see where they are moving and what they're doing on such a fine time scale," said Wilmers. "This allows us to see these cryptic animals moving through their environment."

Another example details the behavior of the adult female with a yearling cub. She kills an aardwolf (a small insect-eating mammal), feeds a bit, then meanders and rests for a few hours until she kills an impala (a medium-sized antelope that is common prey for African leopards). She feeds briefly, then walks directly back to her cub, guiding it first to the aardwolf and then the impala.

Additionally, Wilmers was able to calculate and then compare the energetics of the mother and her son as they traveled together, concluding that the cub expended 12 percent more energy to travel the same distance.

African leopards are among the most elusive mammals on the planet--more so than African lions or cheetahs. "Their whole strategy is to be elusive," said Wilmers. "People get glimpses of them, but that's all. Looking at this data is like going on a safari for the first time and seeing an animal you've only seen in captivity before."

These fine-grained energetics data open the door to understanding the ecological consequences of the leopard's predatory drive. Knowing the African leopard's energetic needs allows researchers to evaluate where they hunt, what they hunt, and to estimate the level of risk they might be willing to take in pursuit of attractive prey. In combination, these factors have implications for humans and the livestock that often share habitat with African leopards.

The placement of a fence, for example, could have energetic "costs" for leopards if they have to travel farther--expending more energy--to patrol territory, hunt, and provide for their offspring. Those costs would increase their drive to kill. "They might take bigger risks, they might catch larger prey like impala, and that could effect the impala population and what they feed on," said Wilmers, outlining the "cascade" of ecosystem effects that could follow human changes to the landscape.

"To be able to link behavior to energetics to ecological effects is an important conceptual advance," said Wilmers. "Once you understand how that circle works, we can assess how our actions will impact the animals, and how those effects will play out on the ecosystem."
-end-
Coauthors include Lynne Isbell of UC Davis, and Justin Suraci and Terrie Williams of UC Santa Cruz.

University of California - Santa Cruz

Related Behavior Articles:

Is Instagram behavior motivated by a desire to belong?
Does a desire to belong and perceived social support drive a person's frequency of Instagram use?
A 3D view of climatic behavior at the third pole
Research across several areas of the 'Third Pole' -- the high-mountain region centered on the Tibetan Plateau -- shows a seasonal cycle in how near-surface temperature changes with elevation.
Witnessing uncivil behavior
When people witness poor customer service, a manager's intervention can help reduce hostility toward the company or brand, according to WSU research.
Whole-brain imaging of mice during behavior
In a study published in Neuron, Emilie Macé from Botond Roska's group and collaborators demonstrate how functional ultrasound imaging can yield high-resolution, brain-wide activity maps of mice for specific behaviors.
Swarmlike collective behavior in bicycling
Nature is full of examples of large-scale collective behavior; humans also exhibit this behavior, most notably in pelotons, the mass of riders in bicycle races.
More Behavior News and Behavior Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...