Nav: Home

Ultra-thin camera creates images without lenses

June 21, 2017

Traditional cameras -- even those on the thinnest of cell phones--cannot be truly flat due to their optics: lenses that require a certain shape and size in order to function. At Caltech, engineers have developed a new camera design that replaces the lenses with an ultra-thin optical phased array (OPA). The OPA does computationally what lenses do using large pieces of glass: it manipulates incoming light to capture an image.

Lenses have a curve that bends the path of incoming light and focuses it onto a piece of film or, in the case of digital cameras, an image sensor. The OPA has a large array of light receivers, each of which can individually add a tightly controlled time delay (or phase shift) to the light it receives, enabling the camera to selectively look in different directions and focus on different things.

"Here, like most other things in life, timing is everything. With our new system, you can selectively look in a desired direction and at a very small part of the picture in front of you at any given time, by controlling the timing with femto-second--quadrillionth of a second--precision," says Ali Hajimiri, Bren Professor of Electrical Engineering and Medical Engineering in the Division of Engineering and Applied Science at Caltech, and the principal investigator of a paper describing the new camera. The paper was presented at the Optical Society of America's (OSA) Conference on Lasers and Electro-Optics (CLEO) and published online by the OSA in the OSA Technical Digest in March 2017.

"We've created a single thin layer of integrated silicon photonics that emulates the lens and sensor of a digital camera, reducing the thickness and cost of digital cameras. It can mimic a regular lens, but can switch from a fish-eye to a telephoto lens instantaneously -- with just a simple adjustment in the way the array receives light," Hajimiri says.

Phased arrays, which are used in wireless communication and radar, are collections of individual transmitters, all sending out the same signal as waves. These waves interfere with each other constructively and destructively, amplifying the signal in one direction while canceling it out elsewhere. Thus, an array can create a tightly focused beam of signal, which can be steered in different directions by staggering the timing of transmissions made at various points across the array.

A similar principle is used in reverse in an optical phased array receiver, which is the basis for the new camera. Light waves that are received by each element across the array cancel each other from all directions, except for one. In that direction, the waves amplify each other to create a focused "gaze" that can be electronically controlled.

"What the camera does is similar to looking through a thin straw and scanning it across the field of view. We can form an image at an incredibly fast speed by manipulating the light instead of moving a mechanical object," says graduate student Reza Fatemi (MS '16), lead author of the OSA paper.

Last year, Hajimiri's team rolled out a one-dimensional version of the camera that was capable of detecting images in a line, such that it acted like a lensless barcode reader but with no mechanically moving parts. This year's advance was to build the first two-dimensional array capable of creating a full image. This first 2D lensless camera has an array composed of just 64 light receivers in an 8 by 8 grid. The resulting image has low resolution. But this system represents a proof of concept for a fundamental rethinking of camera technology, Hajimiri and his colleagues say.

"The applications are endless," says graduate student Behrooz Abiri (MS '12), coauthor of the OSA paper. "Even in today's smartphones, the camera is the component that limits how thin your phone can get. Once scaled up, this technology can make lenses and thick cameras obsolete. It may even have implications for astronomy by enabling ultra-light, ultra-thin enormous flat telescopes on the ground or in space."

"The ability to control all the optical properties of a camera electronically using a paper-thin layer of low-cost silicon photonics without any mechanical movement, lenses, or mirrors, opens a new world of imagers that could look like wallpaper, blinds, or even wearable fabric," says Hajimiri. Next, the team will work on scaling up the camera by designing chips that enable much larger receivers with higher resolution and sensitivity.
-end-
The study is titled "An 8X8 Heterodyne Lens-less OPA Camera." This research was funded by the Caltech Innovation Initiative (CI2).

California Institute of Technology

Related Engineering Articles:

Engineering a new cancer detection tool
E. coli may have potentially harmful effects but scientists in Australia have discovered this bacterium produces a toxin which binds to an unusual sugar that is part of carbohydrate structures present on cells not usually produced by healthy cells.
Engineering heart valves for the many
The Wyss Institute for Biologically Inspired Engineering and the University of Zurich announced today a cross-institutional team effort to generate a functional heart valve replacement with the capacity for repair, regeneration, and growth.
Geosciences-inspired engineering
The Mackenzie Dike Swarm and the roughly 120 other known giant dike swarms located across the planet may also provide useful information about efficient extraction of oil and natural gas in today's modern world.
Engineering success
Academically strong, low-income would-be engineers get the boost they need to complete their undergraduate degrees.
HKU Engineering Professor Ron Hui named a Fellow by the UK Royal Academy of Engineering
Professor Ron Hui, Chair Professor of Power Electronics and Philip Wong Wilson Wong Professor of Electrical Engineering at the University of Hong Kong, has been named a Fellow by the Royal Academy of Engineering, UK, one of the most prestigious national academies.
Engineering a better biofuel
The often-maligned E. coli bacteria has powerhouse potential: in the lab, it has the ability to crank out fuels, pharmaceuticals and other useful products at a rapid rate.
Pascali honored for contributions to engineering education
Raresh Pascali, instructional associate professor in the Mechanical Engineering Technology Program at the University of Houston, has been named the 2016 recipient of the Ross Kastor Educator Award.
Scaling up tissue engineering
A team at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A.
Engineering material magic
University of Utah engineers have discovered a new kind of 2-D semiconducting material for electronics that opens the door for much speedier computers and smartphones that also consume a lot less power.
Engineering academic elected a Fellow of the IEEE
A University of Bristol academic has been elected a Fellow of the world's largest and most prestigious professional association for the advancement of technology.

Related Engineering Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".