Nav: Home

UV-sensing protein in the brain of a marine annelid zooplankton

June 21, 2017

Researchers at Institute for Molecular Sciences reported that a photoreceptive protein expressed in the brain a marine annelid zooplankton (Platynereis dumerilii) is UV-sensitive. This work was carried out as a collaborative work of Drs. Hisao Tsukamoto and Yuji Furutani (Institute for Molecular Science) with Drs. Yoshihiro Kubo and I-Shan Chen (National Institute for Physiological Sciences). This study was published online in the Journal of Biological Chemistry on June 16, 2017.

Most animals use external light signals for vision and "non-visual" photoreceptive functions, such as regulation of circadian behaviors. In some cases, photoreceptor cells outside eyes are involved in non-visual photoreception. Previous studies have shown that larvae of the annelid Platynereis dumerilii (marine ragworm), which are studied as a zooplankton model, possess photoreceptor cells in the brain, and the cells regulate circadian swimming behaviors. Interestingly, the brain photoreceptor cells in Platynereis express an opsin that is closely related to visual pigments in our visual photoreceptor (rod and cone) cells. Zooplankton show a synchronized circadian movement known as diel vertical migration (DVM), moving upward in water at night and downward in daytime. DVM is probably the largest daily movement of biomass, comparable to human commuting. Since a major cause of DVM is to avoid damaging UV (ultra-violet) irradiation, light-dependent DVM regulation via the brain photoreceptor cells was suggested.

This study showed that the Platynereis opsin can receive and transmit UV signals. Unlike vertebrate visual opsins, the opsin can directly bind exogenous all-trans-retinal. This suggests that the opsin enables the brain photoreceptor cells to detect UV signals, even without the supply of 11-cis-retinal, which is specifically produced in eyes. Mutagenesis analyses identified that a single amino acid residue is responsible for not only UV sensing but also direct binding of exogenous all-trans-retinal. Thus, the single residue is essential for the opsin to achieve the characteristics suitable for UV reception in the brain. Taken together, the opsin possesses ideal properties enabling the brain photoreceptor cells in Platynereis to sense ambient UV signals.

As summarized above, this study revealed molecular basis of the opsin to function as a UV-sensor in the brain of the zooplankton model. Since detection of ambient UV signals should be necessary for DVM, the molecular properties of the opsin are helpful to understand the physiology, ecology and evolution of zooplankton species.
-end-
Information of the paper?

Journal: Journal of Biological Chemistry

Paper title: A ciliary opsin in the brain of a marine annelid zooplankton is UV-sensitive and the sensitivity is tuned by a single amino acid residue.

Authors: Hisao Tsukamoto, I-Shan Chen, Yoshihiro Kubo, Yuji Furutani.

Publication date: 6/16/2017 (online)

DOI: 10.1074/jbc.M117.793539

Research Group?Institute for Molecular Science (Hisao Tsukamoto and Yuji Furutani), and National Institute for Physiological Sciences (Yoshihiro Kubo and I-Shan Chen).

Financial Supports?


JSPS KAKENHI (#25840122 and #17K15109 for H. T., and #26708002 for Y. F.)
Uehara Memorial Foundation
The Center for the Promotion of Integrated Sciences (CPIS) of SOKENDAI
The Cooperative Study Program of National Institute for Physiological Sciences

National Institutes of Natural Sciences

Related Brain Articles:

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
More Brain News and Brain Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...