Nav: Home

Exposure to fracking chemicals and wastewater spurs fat cell development

June 21, 2018

DURHAM, N.C. - Exposure to fracking chemicals and wastewater promotes fat cell development, or adipogenesis, in living cells in a laboratory, according to a new Duke University-led study.

Researchers observed increases in both the size and number of fat cells after exposing living mouse cells in a dish to a mixture of 23 commonly used fracking chemicals. They also observed these effects after exposing the cells to samples of wastewater from fracked oil and gas wells and surface water believed to be contaminated with the wastewater. The findings appear June 21 in Science of the Total Environment.

"We saw significant fat cell proliferation and lipid accumulation, even when wastewater samples were diluted 1,000-fold from their raw state and when wastewater-affected surface water samples were diluted 25-fold," said Chris Kassotis, a postdoctoral research associate at Duke's Nicholas School of the Environment, who led the study.

"Rather than needing to concentrate the samples to detect effects, we diluted them and still detected the effects," he said.

Previous lab studies by Kassotis and his colleagues have shown that rodents exposed during gestation to the mix of 23 fracking chemicals are more likely to experience metabolic, reproductive and developmental health impacts, including increased weight gain.

Kassotis said further research will be needed to assess whether similar effects occur in humans or animals who drink or come into physical contact with affected surface waters outside the laboratory.

More than 1,000 different chemicals are used for hydraulic fracturing across the United States, many of which have been demonstrated through laboratory testing to act as endocrine disrupting chemicals in both cell and animal models.

To conduct this study, Kassotis and colleagues collected samples of fracking wastewater and wastewater-contaminated surface water near unconventional (aka, fracked) oil and gas production sites in Garfield County, Colorado, and Fayette County, West Virginia, in 2014.

Laboratory cultures of mouse cells were then exposed to these waters at varying concentrations or dilutions over a two-week period. The researchers measured how fat cell development in the cultures was affected. They performed similar tests exposing cell models to a mix of 23 fracking chemicals.

Within each experiment, other cells were exposed to rosiglitazone, a pharmaceutical known to be highly effective at activating fat cell differentiation and causing weight gain in humans.

The results showed that the 23-chemical mix induced about 60 percent as much fat accumulation as the potent pharmaceutical; the diluted wastewater samples induced about 80 percent as much; and the diluted surface water samples induced about 40 percent as much.

In all three cases, the number of pre-adipocytes, or precursor fat cells, that developed was much greater in cell models exposed to the chemicals or water samples than in those exposed to the rosiglitazone.

The tests also provided insights into the mechanisms that might be driving these effects.

"Activation of the hormone receptor PPAR-gamma, often called the master regulator of fat cell differentiation, occurred in some samples, while in other samples different mechanisms such as inhibition of the thyroid or androgen receptor, seemed to be in play," Kassotis explained.
-end-
Susan Nagel of the University of Missouri and Heather Stapleton of Duke's Nicholas School co-authored the new study with Kassotis.

Primary funding came from the National Institute for Environmental Health Sciences. Additional funding came from the University of Missouri, a crowdfunding campaign via Experiment.com, and an EPA 520 STAR Fellowship Assistance Agreement.

CITATION: "Unconventional Oil and Gas Chemicals and Wastewater-Impacted Water Samples Promote Adipogenesis via PPARγ-Dependent and Independent Mechanisms in 3T3-L1 Cells," Christopher D. Kassotis, Susan C. Nagel and Heather M. Stapleton; Science of the Total Environment, June 21, 2018. DOI: 10.1016/j.scitotenv.2018.05.030

Duke University

Related Wastewater Articles:

Bacteria-coated nanofiber electrodes clean pollutants in wastewater
Cornell University researchers may have created an innovative, cost-competitive electrode material for cleaning pollutants in wastewater.
Bacteria may supercharge the future of wastewater treatment
Wastewater treatment plants have a PR problem: People don't like to think about what happens to the waste they flush down their toilets.
Wastewater injection rates may have been key to Oklahoma's largest earthquake
Changes to the rate of wastewater injection in disposal wells may have contributed to conditions that led to last year's Pawnee earthquake in Oklahoma, according to a new report published May 3 as part of a focus section in Seismological Research Letters.
'Peeling the onion' to get rid of odors near wastewater treatment plants
Nuisance smells from sewage and wastewater treatment facilities are a worldwide problem.
Wastewater cleaned thanks to a new adsorbent material made from fruit peels
Researchers from the University of Granada, and from the Center for Electrochemical Research and Technological Development and the Center of Engineering and Industrial Development, both in Mexico, have developed a process that allows to clean waters containing heavy metals and organic compounds considered pollutants, using a new adsorbent material made from the peels of fruits such as oranges and grapefruits.
Wastewater treatment upgrades result in major reduction of intersex fish
Upgrades to a wastewater treatment plant along Ontario's Grand River, led to a 70 per cent drop of fish that have both male and female characteristics within one year and a full recovery of the fish population within three years, according to researchers at the University of Waterloo.
Wastewater research may help protect aquatic life
New wastewater system design guidelines developed at UBC can help municipal governments better protect aquatic life and save millions of dollars a year.
Germs in wastewater often become airborne
Using household wastewater to irrigate food crops in drought-stricken or arid regions isn't the perfect solution.
CU Boulder engineers transform brewery wastewater into energy storage
University of Colorado Boulder engineers have developed an innovative bio-manufacturing process that uses a biological organism cultivated in brewery wastewater to create the carbon-based materials needed to make energy storage cells.
Blending wastewater may help California cope with drought
Researchers at UC Riverside have developed an economic model that demonstrates how flexible wastewater treatment processes which blend varying levels of treated effluent can create a water supply that benefits crops and is affordable.

Related Wastewater Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".