Fat cells control fat cell growth

June 21, 2018

Obesity is the plague of our times. Some 80 percent of obese people will develop Type 2 diabetes at some point in their lives, and being overweight is also a significant risk factor for cancer and heart attacks. Science has long since recognised that being overweight is not necessarily harmful. In fact, it seems to be important for metabolic health to have many smaller fat cells rather than fewer larger ones. For this reason, researchers around the world are attempting to find ways to stimulate the formation of new fat cells, but so far they have met with little success.

Researchers at ETH Zurich and their colleagues at EPFL have made a breakthrough in that regard: they have discovered a new type of cell in mammalian fatty tissue that hinders the formation of new fat cells, thus preventing the creation of "good" fat. The scientists have published their findings in the latest issue of Nature.

Fat cells regulate growth of fat cells

How are fat cells created? This question lies at the heart of any attempt to develop fat-related treatments, but research to date has found no definitive answer. It is known that fat cells arise from progenitor cells and, once differentiated, they are unlikely to keep dividing. "We were looking for these kinds of progenitor cell in the fat tissues of mice when we stumbled across a previously unknown type of fat cell with interesting properties," says Christian Wolfrum, Professor for Translational Nutritional Biology at ETH.

Experiments in mice and with human fatty tissues showed that it is a regulatory cell that appears to be constantly sending signals to the surrounding tissue. "We first identified four proteins that work together to prevent progenitor cells from turning into new fat cells," says Hua Dong, a doctoral student in Wolfrum's group and one of the lead authors of the study. The scientists dubbed the newly discovered cell type "Aregs", which stands for adipogenesis regulatory cells.

All fat is not created equal

The new cell type opens up intriguing treatment possibilities. When we gain weight, the energy-storing white adipose tissue can grow in one of two ways: in most overweight people, the existing fat cells get bigger. At some point, the cells can no longer store the fat and they release it into the bloodstream, which deposits it in the liver and muscles, thus increasing the risk of diabetes and other secondary conditions. Yet in about 20 percent of overweight people, the fatty tissues produce new cells. Thanks to these additional "containers", these people can better store the excess fat and remain healthy.

Thus far, obesity researchers and pharmaceutical companies have focused on how to activate progenitor cells in order to multiply the number of fat cells. "Still, no one really understood why new cells form so rarely, even in adipose tissue with lots of progenitor cells," Wolfrum says. The inhibiting Aregs now provide an explanation.

This discovery also opens up promising avenues for future therapies. For example, the researchers were able to demonstrate that new fat cells do in fact appear when the Aregs have been removed from the fatty tissue. In addition, they found indications that these fat regulators appear more frequently in obese mice with large fat cells.

The latest results go a small step further towards the far-off goal of finding a therapy for protecting obese people from diabetes and other secondary illnesses. However, the focus is always on physiological health - not on weight. For those looking to lose weight, there's still only one way to do it: take in fewer calories than you use.
-end-


ETH Zurich

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.