Nav: Home

Fright and flight: Deciding when to escape

June 21, 2018

How does your brain decide what to do in a threatening situation? A new paper published in Nature describes a mechanism by which the brain classifies the level of a threat and decides when to escape.

Escaping from a dangerous situation is crucial for survival, but it is also important to only escape from settings that really are dangerous. This is because decisions to escape are almost always trade-offs between safety and access to things of value. For example, animals need to forage, but when they are scared and hiding in their shelter, they are missing out on vital opportunities of finding food and mates.

This dynamic can be completely debilitating in humans with post-traumatic stress disorder (PTSD) or severe anxiety, as such individuals can become confined to their homes due to pathological fear. Thus it is important for brain circuitry to correctly classify and act on threats in the environment.

Dr. Tiago Branco, Senior Research Fellow at Sainsbury Wellcome Centre, commented: "We are excited to have found a subcellular mechanism for computing the very important decision of running away from threats. This level of detailed understanding not only advances our knowledge of how the brain makes fundamental computations, but also gives us an entry point to figure out what goes wrong in conditions that cause abnormally frequent defensive behaviours, and potentially, how to treat them."

Previous research identified parts of the brain important for escape behaviour, but up until now it wasn't known whether these regions were also involved in evaluating threat level and implementing decisions to escape. A team of neuroscientists led by Dr. Branco working first at the MRC Laboratory of Molecular Biology (LMB) and recently at the Sainsbury Wellcome Centre, systematically tested the innate reactions of mice to looming shadows, as would occur from a bird of prey, an evolutionarily conserved behaviour that is not learnt. Using this approach they have deciphered how escape decisions are implemented in the brain at the algorithmic and mechanistic level, describing the process as a 'threshold computation' of threat level.

The work demonstrated that these decisions are made at the connections between two different parts of the brain: the superior colliculus (SC), which is responsible for integrating information about the threat and estimating the threat level, and the periaqueductal gray (PAG), which represents the activity above the threshold and causes the animal to escape.

The threshold mechanism arises because the SC-PAG connection is very weak and unreliable, so it fails most of the time. It is only when the threat level rises and is sustained that there is sufficient activity to overcome this weak connection and initiate escape. In this way the decision is computed at the level of the synaptic connection between the SC and PAG.

The study makes use of a wide range of techniques, including quantitative behaviour assays that manipulate the probability of whether the animal escapes to threats, and neural activity recordings with head-mounted microscopes and high-density Neuropixels silicon probes. In addition, a special form of chemogenetics was used to specifically inactivate the SC-PAG synapse and thereby prove that the computation of this threshold is implemented by this synaptic connection. Furthermore a computational model was developed that describes the observed behaviour.

The next piece of the puzzle will be to understand how the threshold for the decision is modulated based on past experience and the current conditions of the environment. "Successfully escaping from threats can be a very complicated process that relies on your particular representation of the environment you are in, and what to expect from it. This is at the core of how the brain generates behaviour, and now that we have figured out a critical part of the brain neural circuitry that controls the decision to escape, we can start to explore the computation of complex variables that influence escape decisions, such as how likely it is that safety can be reached, and what are the fastest routes to possible shelters," Dr. Branco concluded.
-end-
This research was supported by a Wellcome Trust/Royal Society Henry Dale Fellowship (098400/Z/12/Z), a Medical Research Council (MRC) grant MC-UP-1201/1, a Wellcome Trust and Gatsby Charitable Foundation SWC Fellowship, MRC PhD Studentship, a Boehringer Ingelheim Fonds PhD fellowship, DFG fellowship, and a Marie Sklodowska-Curie Individual Fellowship and EMBO Long Term Fellowship.

Source:

Read the full paper in Nature: 'A synaptic threshold mechanism for computing escape decisions' By Evans, D.A, Stempel, A.V., et al.

About Sainsbury Wellcome Centre

Sainsbury Wellcome Centre brings together world-leading neuroscientists to generate theories about how neural circuits in the brain give rise to the fundamental processes underpinning behaviour, including perception, memory, expectation, decisions, cognition, volition and action. Funded by the Gatsby Charitable Foundation and Wellcome, Sainsbury Wellcome Centre is located within UCL's School of Life and Medical Sciences and is closely associated with the Faculties of Life Sciences and Brain Sciences. http://www.ucl.ac.uk/swc.

Sainsbury Wellcome Centre

Related Brain Articles:

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.