Ratchet up the pressure: Molecular machine exploits motion in a single direction

June 21, 2018

Osaka - Life is driven by molecular machines. Found in every cell, these tiny motors convert chemical energy into work to keep the body moving. The invention of synthetic molecular machines, which perform similar jobs to power miniaturized technologies, is a hot topic in nanoscience.

Now, a team led by Osaka University has invented a ratchet-like molecular machine - a potential component of sophisticated molecular devices - which allows movement in one direction only. This allows the motion and chemical reactivity of a molecular machine to be observed simultaneously, which has been a long-standing challenge.

A classic design for molecular machines is a symmetric "dumbbell" - a large cyclic molecule in the middle, trapped between bulky blockers at each end, linked by a spacer. Inspired by this pattern (known as rotaxane), the Osaka team created a pseudo-rotaxane, where all three parts - the two blockers ("stations") and the central cycle - are small rings. The study was reported in Scientific Reports.

Both stations of their molecular machine are made from pyridinium, a six-membered cycle. Methyl (CH3) groups are attached to each station, like barbed hooks. However, one station carries a single methyl group, while the other end has two.

"This asymmetry sets up an axis along the molecule's length, favoring movement toward the double-hooked end, which acts like a stopper," study first author Akihito Hashidzume says.

The concept was demonstrated by using α-cyclodextrin (α-CD), a macrocycle made of six glucose rings. The α-CD ring is wide enough to fit over the one-hooked end and slide along the ratchet toward the stopper. On the way, it interacts with the stations and the central ring. In fact, α-CD catalyzes a chemical reaction in which the ratchet-like molecule exchanges hydrogen atoms with the water solvent.

Labeling experiments confirmed that this exchange occurred only at one end of the ratchet. When the reaction was carried out in heavy water (D2O), deuterium (D) atoms were found on the methyl groups of the one-hooked station and the central ring as well as on the methylene of the second station, but not the two-hooked stopper. It seems that the α-CD passed over the central ring but was blocked from reaching the methyl groups of the stopper.

"Here we have a chemical reaction coupled with motion biased in one direction," corresponding author Akira Harada says. "We call it 'face-selective translation,' as α-CD prefers to move from one face of pseudo-rotaxane to the other. We take our cue from nature: by ratcheting movement in one direction, we hope to harness chemical energy in a similar way to biomolecular motors, like those in muscles."
-end-
Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: http://resou.osaka-u.ac.jp/en/top

Osaka University

Related Chemical Reaction Articles from Brightsurf:

New multicomponent reaction frontiers
The synthesis of complex molecules such as drugs, requires a process that sometimes involves several phases that increase its cost and harden the access to the product.

Allergic reaction: How the immune system identifies nickel
The metal nickel is one of the most common triggers of allergic contact dermatitis in humans.

Electrochemical reaction powers new drug discoveries
A Cornell-led collaboration is flipping the switch on traditional synthetic chemistry by using electricity to drive a new chemical reaction that previously stumped chemists who rely on conventional methods.

Al2Pt for oxygen evolution reaction in water splitting
Looking for rational design of new types of OER electrocatalysts and addressing fundamental questions about the key reactions in energy conversion, the inter-institutional MPG-consortium MAXNET Energy integrated the scientists from different institutions in Germany and abroad.

Researchers shed light on new enzymatic reaction
Researchers have discovered that repurposed enzymes and light are key to producing chemical compounds in an environmentally friendly fashion.

A small twist leads to a big reaction
In proteins, amino acids are held together by amide bonds.

Is the simplest chemical reaction really that simple?
New research by scientists at the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS) has shown, surprisingly, in the simplest, well-studied reaction, there is still uncovered mechanism.

First direct look at how light excites electrons to kick off a chemical reaction
The first step in many light-driven chemical reactions, like the ones that power photosynthesis and human vision, is a shift in the arrangement of a molecule's electrons as they absorb the light's energy.

Predicting reaction results: Machines learn chemistry
In the production of chemical compounds, the success of each individual reaction depends on numerous parameters.

Chemists glimpse the fleeting 'transition state' of a reaction
Chemists at MIT, Argonne National Laboratory, and several other institutions have devised a technique that allows them to determine the structure of the transition state of a reaction by observing the products that result from the reaction.

Read More: Chemical Reaction News and Chemical Reaction Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.