Nav: Home

When fluid flows almost as fast as light -- with quantum rotation

June 21, 2018

Quark-gluon plasma is formed as a result of high energy collisions of heavy ions. After a collision, for a dozen or so yoctoseconds (that's 10-24 seconds!), this most perfect of all known fluids undergoes rapid hydrodynamic expansion with velocities close to the velocity of light. An international team of scientists, associated with the IFJ PAN and the GSI Centre, has presented a new model describing these extreme flows. Interestingly, for the first time effects resulting from the fact that the particles creating the plasma carry spin, that is, quantum rotation, are taken into account.

Each proton and each neutron is composed of several quarks bound by strong interactions carried by intermediary particles called gluons. When heavy ions built of protons and neutrons, accelerated to velocites very close to the velocity of light, collide with each other, they usually undergo destruction, transforming into an exotic fluid: quark-gluon plasma. Due to its negligible viscosity, this plasma is considered to be the most perfect fluid in the Universe. New experimental measurements, however, suggest that the particles leaving the plasma exhibit nontrivial arrangement of their spin directions. In order to explain these results, a group of scientists from the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ PAN) in Cracow and the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt (Germany) has presented a new model of relativistic flows of quark-gluon plasma, taking into account the phenomena arising from the quantum spin of the particles forming it.

For about ten microseconds after the Big Bang, quark-gluon plasma filled the entire Universe. However, it rapidly cooled down and gluons stuck the quarks together into groups - the particles of which our world is built. As a result, quark-gluon fluid can today only be seen as the effect of high-energy collisions of heavy ions (and, possibly, also of smaller colliding systems consisting of protons and ions). Collisions of this type are currently being carried out in just a few accelerator centres in the world.

The flow of fluids and gases is dealt with in hydrodynamics, a field that has been under development for centuries. After the emergence of the theory of relativity, classical hydrodynamics was extended by relativistic phenomena, occurring when fluid flows at velocities close to the velocity of light. After the birth of quantum theory, with time, hydrodynamics can be extended by descriptions of the flow of particles with spin.

Spin is a feature of elementary particles associated with the properties of their wave functions relative to rotation. It can only take on discrete values, e.g. 0, 1/2, 1, 3/2, etc. The direction of spin of particles with spin 1/2 can be equal to +1/2 or -1/2 with respect to any axis. The non-zero polarization of particles with spin 1/2 means that the produced particles are more likely to take on one spin direction (+1/2 or -1/2).

"Hydrodynamics is an excellent tool for describing many physical phenomena. We have broadened its scope of applicability. We are the first to present a coherent description of relativistic particle flows with spin 1/2," explains Prof. Wojciech Florkowski (IFJ PAN, UJK, EMMI), who in collaboration with the group of Prof. Bengt Friman (GSI) has developed a new flow model.

Work on the model of relativistic flows with spin was inspired by recent measurements of the polarization of spins of particles known as Lambda hyperons (these are conglomerates of three quarks: up, down and strange, with a total spin of 1/2), recorded in heavy-ion collisions. Physicists have long been experimenting in trying to better understand the polarization of Lambda hyperons. The measurements, however, were subject to considerable uncertainty. Only recently in experiments carried out at the Brookhaven National Laboratory on Long Island near New York has it been shown that the spins of the Lambda hyperons formed in collisions of heavy nuclei are indeed polarized.

It has been known for a long time that the spin of a quantum object contributes to its total momentum. For example, in ferromagnetic materials, the Einstein-de Haas effect can be observed: when a non-polarized system is placed in a magnetic field, the spin of the particles it is composed of starts to orientate according to the magnetic field which means that to maintain the total angular momentum the system must begin to rotate. Observation of the polarization of the Lambda hyperons formed as a result of quark-gluon plasma transformations thus indicates the difficult to ignore role of spin in shaping the flow of this plasma.

The model presented by the group of physicists from IFJ PAN and GSI is a generalization of the hydrodynamics of perfect fluid. Since there is spin in the described systems, the principle of angular-momentum conservation should have been included in the theoretical description.

"Just as temperature is associated with the principle of conservation of energy, velocity with the principle of conservation of momentum, and electric potential with the principle of conservation of charge current, so in the systems described by us, spin polarization is associated with the principle of conservation of momentum. When you take this principle into account, you get additional equations, better describing the evolution of the system," explains Prof. Florkowski.

Quark-gluon plasma is such an exotic state of matter that for decades or even hundreds of years there will be no question of its technological applications. However, these studies have important implications today. Relativistic flows of particles with spin are in fact a new window to the world of strong interactions, which, among others, bind quarks in protons and neutrons. Thus, strong interactions play a very important role in the Universe, but they are extremely complicated to describe. Therefore, researchers hope that in relativistic flows with spin it will be possible to get to know these effects a little better.
-end-
This study was co-funded, among others, by the ExtreMe Matter Institute (EMMI), which operates at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt (Germany).

The Henryk Niewodniczanski Institute of Nuclear Physics (IFJ PAN) is currently the largest research institute of the Polish Academy of Sciences. The broad range of studies and activities of IFJ PAN includes basic and applied research, ranging from particle physics and astrophysics, through hadron physics, high-, medium-, and low-energy nuclear physics, condensed matter physics (including materials engineering), to various applications of methods of nuclear physics in interdisciplinary research, covering medical physics, dosimetry, radiation and environmental biology, environmental protection, and other related disciplines. The average yearly yield of the IFJ PAN encompasses more than 600 scientific papers in the Journal Citation Reports published by the Thomson Reuters. The part of the Institute is the Cyclotron Centre Bronowice (CCB) which is an infrastructure, unique in Central Europe, to serve as a clinical and research centre in the area of medical and nuclear physics. IFJ PAN is a member of the Marian Smoluchowski Krakow Research Consortium: "Matter-Energy-Future" which possesses the status of a Leading National Research Centre (KNOW) in physics for the years 2012-2017. The Institute is of A+ Category (leading level in Poland) in the field of sciences and engineering.

CONTACTS:

Prof. Wojciech Florkowski
The Institute of Nuclear Physics Polish Academy of Sciences
tel.: +48 12 6628469
email: wojciech.florkowski@ifj.edu.pl

SCIENTIFIC PAPERS:

"Relativistic fluid dynamics with spin"
W. Florkowski, B. Friman, A. Jaiswal, E. Speranza
Physical Review C 97, 041901(R)
DOI: https://doi.org/10.1103/PhysRevC.97.041901

LINKS:

http://www.ifj.edu.pl/
The website of the Institute of Nuclear Physics Polish Academy of Sciences.

http://press.ifj.edu.pl/
Press releases of the Institute of Nuclear Physics Polish Academy of Sciences.

IMAGES:

IFJ180621b_fot01s.jpg
HR: http://press.ifj.edu.pl/news/2018/06/21/IFJ180621b_fot01.jpg

Ultrarelativistic flow of quark-gluon plasma with spin. On the left, the initial state of the system, on the right - the result of hydrodynamic evolution. The arrows on the bottom view show the plasma flow lines. The red area is the region of polarized particles that evolves according to the flow of matter. The top graphs show plasma temperature profiles. (Source: IFJ PAN)

The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

Related Magnetic Field Articles:

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.
Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.
New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.
Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Adhesive which debonds in magnetic field could reduce landfill waste
Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.
Earth's last magnetic field reversal took far longer than once thought
Every several hundred thousand years or so, Earth's magnetic field dramatically shifts and reverses its polarity.
A new rare metals alloy can change shape in the magnetic field
Scientists developed multifunctional metal alloys that emit and absorb heat at the same time and change their size and volume under the influence of a magnetic field.
Physicists studied the influence of magnetic field on thin film structures
A team of scientists from Immanuel Kant Baltic Federal University together with their colleagues from Russia, Japan, and Australia studied the influence of inhomogeneity of magnetic field applied during the fabrication process of thin-film structures made from nickel-iron and iridium-manganese alloys, on their properties.
'Magnetic topological insulator' makes its own magnetic field
A team of U.S. and Korean physicists has found the first evidence of a two-dimensional material that can become a magnetic topological insulator even when it is not placed in a magnetic field.
Scientists develop a new way to remotely measure Earth's magnetic field
By zapping a layer of meteor residue in the atmosphere with ground-based lasers, scientists in the US, Canada and Europe get a new view of Earth's magnetic field.
More Magnetic Field News and Magnetic Field Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.