Nav: Home

Hitchhiking to kill

June 21, 2018

How can elimination of therapeutics from the bloodstream or their early enzymatic degradation be avoided in systemic delivery? Chinese scientists have new developed a method to bind an established cancer therapeutic, floxuridine, with natural serum albumin for its transport and delivery to target cancer cells. In the journal Angewandte Chemie, the authors demonstrate the automated synthesis of a conjugated floxuridine polymer, its successful transport and delivery, and its efficiency in stopping tumor growth.

How can we get a drug to its target? Despite much progress in nanocarrier research, the problem is still persistent, especially in cancer therapy. During transport in the bloodstream, the anticancer drugs may interfere with healthy cells, or they may be degraded by enzymes or eliminated from the body before entering the tumor tissue. Envisaging a natural and safe carrier system, Weihong Tan and colleagues at Hunan University, China, and the University of Florida, USA, chose endogeneous serum albumin as a possible nanotransporter. To ensure binding of the antimetabolite floxuridine to albumin, they had to modify it.

Floxuridine is a fluorinated pyrimidine nucleoside and antimetabolite, which inhibits the enzymes of DNA synthesis. Its oligomer, an oligonucleotide of 10 units, is even more efficient and is actively internalized in the cell. To make it transportable by serum albumin, Prof. Tan and his group decided to endow the oligonucleotide with hydrophobic alkyl chains as a linker. This was necessary because albumin naturally transports lipophilic molecules such as lipids and cholesterol, but not negatively charged oligonucleotides.

The synthesis of the alkyl-chain-conjugated floxuridine oligonucleotide containing 20 units (LFU20) proceeded on a DNA synthesizer. The authors tested the compound for its interaction with serum albumin, cell internalization, transport through the bloodstream in tumor-implanted mice, and tumor proliferation. They observed that although a large fraction of the drug still left the body, a much higher proportion than in the control group accumulated in the tumor. There, the drug was internalized in the cells. The "enhanced permeability and retention effect" directed the accumulation, an effect well established in tumor research. In the cells, the lysosomes take up the drug, and enzymes release the antimetabolic floxuridine structure, the authors note.

The scientists reported that tumor proliferation was halted by the lipid-conjugated compound, whereas the free FU20 drug without lipid anchor could not stop tumor growth. This means that LFU20 appears to "hitchhike" with albumin to find the target cells and accumulate therein. The authors also pointed out that the drug is easily prepared by automated synthesis, and the hydrophobic lipid tail, which ensures the albumin affinity, can be readily incorporated at the 5'-terminus of the oligonucleotide. Hitchhiking with killing potential pays off in drug delivery.
-end-
About the Author

Dr. Weihong Tan is an adjunct professor at the Biomedical Engineering Department and the Department of Chemistry at the Hunan University, China, and a distinguished professor at the University of Florida. His research areas are understanding the molecular foundation of disease using aptamers and the application of molecular engineering and bio-nanotechnology to create probes with interesting properties and clever designs.

https://tan.chem.ufl.edu/

Wiley

Related Enzymes Articles:

How nature builds hydrogen-producing enzymes
A team from Ruhr-Universität Bochum and the University of Oxford has discovered how hydrogen-producing enzymes, called hydrogenases, are activated during their biosynthesis.
New family on the block: A novel group of glycosidic enzymes
A group of researchers from Japan has recently discovered a novel enzyme from a soil fungus.
Surprising enzymes found in giant ocean viruses
A new study led by researchers at Woods Hole Oceanographic Institution (WHOI) and Swansea University Medical School furthers our knowledge of viruses -- in the sea and on land -- and their potential to cause life-threatening illnesses.
How host-cell enzymes combat the coronavirus
Host-cell enzymes called PARP12 and PARP14 are important for inhibiting mutant forms of a coronavirus, according to a study published May 16 in the open-access journal PLOS Pathogens by Stanley Perlman of the University of Iowa, Anthony Fehr of the University of Kansas, and colleagues.
New method enables 'photographing' of enzymes
Scientists at the University of Bonn have developed a method with which an enzyme at work can be 'photographed'.
More Enzymes News and Enzymes Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...