Nav: Home

Waking up is hard to do: Prefrontal cortex implicated in consciousness

June 21, 2018

ANN ARBOR, Mich. -- Philosophers have pondered the nature of consciousness for thousands of years. In the 21st century, the debate over how the brain gives rise to our everyday experience continues to puzzle scientists. To help, researchers in the University of Michigan Medical School Center for Consciousness Science are working to identify areas of the brain that help us wake up, a basic building block of everyday consciousness.

In the search for what controls our overall level of consciousness, researchers have traditionally focused on structures in the lower part of the brain. These structures include the brainstem (which regulates vital functions like breathing, blood pressure and heartbeat); the hypothalamus (which is involved in sleep and controlling bodily functions); and the thalamus (which relays information from the senses). George Mashour, M.D., Ph.D., professor in the Department of Anesthesiology and director of the center, decided to look at different areas of the cortex, the upper part of the brain, for its ability to control the level of consciousness.

Recent research in nonhuman primates provides evidence that the prefrontal cortex has a switchboard-like relationship with other areas of the brain, helping to ignite awareness of visual information.

"There has been a debate that has recently intensified as to whether or not the prefrontal cortex -- versus areas farther back -- plays a role in generating conscious experience. We thought that we'd target some of these different areas in the front and back of the brain to see which ones had the ability to control the level of consciousness," he says.

The key to ignition?

Because anesthesia is used to temporarily eliminate conscious experience during medical procedures, it provides the perfect opportunity to test hypotheses about consciousness.

Mashour and lead-author Dinesh Pal, Ph.D., also of the Department of Anesthesiology, anesthetized rats with a common anesthetic used in humans. "We wanted to see what had the causal power to take an unconscious brain receiving ongoing anesthesia and wake it up," says Pal. To test this, they targeted two neurotransmitters that are associated with wakefulness: acetylcholine and norepinephrine.

The team exposed the anesthetized rats' prefrontal and parietal cortex to drugs that ramped up the effect of the neurotransmitters and measured their brain activity and behavior. When exposed to an acetylcholine-receptor activator, their brain waves, normally slow during sleep and anesthesia, sped up. But rats were able to start behaving as though they were awake only with prefrontal cortex stimulation, all while continuing to receive the same level of anesthesia that is used clinically for surgery in humans. These findings were published in the journal Current Biology.

Mashour says their new study "suggests that the prefrontal cortex also has the potential to play a role in coordinating the level of consciousness, possibly through the cholinergic system."

Clinically, these results could be explored for applications in people with disorders of consciousness, such as coma or vegetative states. "Let's say you have a patient in a coma: Could the prefrontal cortex be a site that is modulated to help coordinate events to help improve level of consciousness?" Mashour asks. The implications of this possibility are significant because of the relative accessibility of the prefrontal cortex.

"It's very difficult and dangerous to directly intervene at the level of arousal centers in the brainstem because of its location, small size and nearby vital functions. Maybe the prefrontal cortex is an accessible gateway to some of those other arousal systems that could be leveraged in a clinical setting outside of anesthesia," he says.
-end-
This work was funded by the National Institutes of Health (R01GM098578), and the Department of Anesthesiology, University of Michigan Medical School, Ann Arbor. Physiology doctoral student Jon Dean was co-first author of the article.

Michigan Medicine - University of Michigan

Related Brain Activity Articles:

Brain activity intensity drives need for sleep
The intensity of brain activity during the day, notwithstanding how long we've been awake, appears to increase our need for sleep, according to a new UCL study in zebrafish, published in Neuron.
Do babies like yawning? Evidence from brain activity
Contagious yawning is observed in many mammals, but there is no such report in human babies.
Understanding brain activity when you name what you see
Using complex statistical methods and fast measurement techniques, researchers found how the brain network comes up with the right word and enables us to say it.
Your brain activity can be used to measure how well you understand a concept
As students learn a new concept, measuring how well they grasp it has often depended on traditional paper and pencil tests.
Altered brain activity in antisocial teenagers
Teenage girls with problematic social behavior display reduced brain activity and weaker connectivity between the brain regions implicated in emotion regulation.
Gender impacts brain activity in alcoholics
Compared to alcoholic women, alcoholic men have more diminished brain activity in areas responsible for emotional processing (limbic regions including the amygdala and hippocampus), as well as memory and social processing (cortical regions including the superior frontal and supramarginal regions) among other functions.
Light, physical activity reduces brain aging
Incremental physical activity, even at light intensity, is associated with larger brain volume and healthy brain aging.
Measuring brain activity in milliseconds possible through new research
Researchers from King's College London, Harvard and INSERM-Paris have discovered a new way to measure brain function in milliseconds using magnetic resonance elastography (MRE).
Autism: Brain activity as a biomarker
Researchers from J├╝lich, Switzerland, France, the Netherlands, and the UK have discovered specific activity patterns in the brains of people with autism.
New MRI sensor can image activity deep within the brain
MIT researchers have developed an MRI-based calcium sensor that allows them to peer deep into the brain.
More Brain Activity News and Brain Activity Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.